AN ELEMENTARY PROOF OF A THEOREM OF T. F. HAVEL

Yasuhiko KAMIYAMA

1. Introduction

We consider the configuration space of the planar equilateral pentagon linkage. More precisely, we define M by

$$M = \{(z_1, z_2, z_3) \in \mathbb{R}^6; \| z_i - z_{i+1} \| = 1, i = 1, 2, \ldots, 5\}$$

where z_4 and z_5 are fixed vectors in \mathbb{R}^2 and we regard z_6 as z_1.

Note that the freedom of independent parameters of M equals to 2. Then it is natural to ask whether M is a manifold and, if in this case, what kind of manifold. In [2], T. F. Havel answers this question and the result is as follows.

Theorem 1. M is a compact, connected and orientable two-dimensional manifold of genus 4.

In order to prove this theorem, Havel considers the following steps. (1) First prove that M is a smooth manifold by showing local coordinates explicitly. (2) Next make a function $f : M \to \mathbb{R}$ by assigning a point of M to its directed area. Then prove that f is a Morse function and $\chi(M) = -6$ is obtained by the Morse theory, here $\chi(M)$ is the Euler number of M. (3) Finally prove that M is orientable.

Received October 31, 1992.
It will be natural that one hopes to prove Theorem 1 more directly without using the Morse theory. And the purpose of this paper is to execute this.

2. Geometric proof of Theorem 1

We write the coordinates of z_4 and z_5 by $z_4 = (-1/2, 0)$ and $z_5 = (1/2, 0)$ respectively and write the clockwise angle from the vector $z_5 \vec{z}_4$ to $z_5 \vec{z}_1$ by α and the counterclockwise angle from the vector $z_4 \vec{z}_5$ to $z_4 \vec{z}_3$ by β respectively. It is clear that $z_1 = (1/2 - \cos \alpha, \sin \alpha), z_3 = (-1/2 + \cos \beta, \sin \beta)$.

Fix z_1 and z_3 arbitrarily, then the freedom of z_2 will be given by the following:

(i) If $0 < || z_1 - z_3 || < 2$, then we can take z_2 at exactly 2 different points. In fact if z_2 is taken so that $|| z_1 - z_2 || = 1, || z_2 - z_3 || = 1$, then the symmetric point z'_2 of z_2 with respect to the segment z_1z_3 also satisfies $|| z_1 - z'_2 || = 1, || z'_2 - z_3 || = 1$.

(ii) If $|| z_1 - z_3 || = 2$, then we can take z_2 at exactly one point. In fact in this case z_2 should be the middle point of the segment z_1z_3.

(iii) If $|| z_1 - z_3 || = 0$, then the freedom of z_2 is homeomorphic to S^1. In fact in this case z_2 can be taken at any point of the circle of radius 1 centered at $z_1 = z_3$.

(iv) If $2 < || z_1 - z_3 ||$, then it is clear that we cannot take z_2 at any point.

Note that the case (iii) occurs if and only if $\alpha = \beta = \pi/3$ or $\alpha = \beta = 5\pi/3$.

Let R be the subspace of M consisting of points of the cases (i)
or (ii) and let D be the subspace of T^2 consisting of (α, β) such that $0 < \| z_1 - z_3 \| \leq 2$, where T^2 is the 2 dimensional torus obtained from $[0, 2\pi] \times [0, 2\pi]$ by the identification $(\alpha, 0) \sim (\alpha, 2\pi)$ and $(0, \beta) \sim (2\pi, \beta)$. Note that the boundary of D, which will be denoted by ∂D, consists of points of the case (ii).

Thus R will be obtained by the following manner. Let $D^{(1)}$ and $D^{(2)}$ be two copies of D, $\partial D^{(1)}$ and $\partial D^{(2)}$ be boundary of $D^{(1)}$ and $D^{(2)}$ respectively and let $i : \partial D^{(1)} \rightarrow \partial D^{(2)}$ be the identity map. Then R is homeomorphic to $D^{(1)} \bigsqcup D^{(2)} / \sim$, where $D^{(1)} \bigsqcup D^{(2)}$ is the disjoint union of $D^{(1)}$ and $D^{(2)}$ and the identification \sim is given by $z^{(1)} \sim z^{(2)}$ if and only if $z^{(1)} \in \partial D^{(1)}$, $z^{(2)} \in \partial D^{(2)}$ such that $z^{(2)} = iz^{(1)}$.

Because of the above observations, we first investigate the domain \tilde{D} which is defined by $\tilde{D} = \{ (\alpha, \beta) \in T^2; \| z_1 - z_3 \| \leq 2 \}$. In order to do this, we shall see $\partial \tilde{D}$, which is by definition $\{ (\alpha, \beta) \in T^2; \| z_1 - z_3 \| = 2 \}$.

Lemma 2.1. $\partial \tilde{D}$ is homeomorphic to S^1.

Proof. This lemma seems clear from the definition of $\partial \tilde{D}$. But for the completeness we shall give some details.

Note that

$$
(2.2) \quad \partial \tilde{D} = \{ (\alpha, \beta) \in T^2; (1 - \cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4 \}.
$$

Once $\alpha \in [0, 2\pi]$ is fixed, then β will be given by

$$
(2.3) \quad \beta = -\alpha/2 + \sin^{-1}\{(1/2 + \cos \alpha)/(-2 \sin(\alpha/2))\}
$$

where $\sin^{-1} \, x = \{ y \in (-\infty, \infty); \sin y = x \}$.

Note that (2.3) asserts that \(-1 \leq (1/2 + \cos \alpha)/(−2 \sin(\alpha/2)) \leq 1\). Then we can easily show that \(\alpha\) must satisfy \(\pi/3 \leq \alpha \leq 5\pi/3\) such that if \(\alpha = \pi/3\), then \(\beta = 4\pi/3\) and \(\alpha = 5\pi/3\), then \(\beta = 2\pi/3\).

By using these results, we can easily prove that \(\partial \tilde{D}\) is homeomorphic to \(S^1\). \(\square\)

By using Lemma 2.1, we can show that \(\tilde{D}\) is homeomorphic to \(T^2 - e^2\), where \(e^2\) is a small open disk contained in \(T^2\). Hence \(D\) is homeomorphic to \(T^2 - \{e^2 \cup p_1 \cup p_2\}\), where \(p_1\) corresponds to \(\alpha = \beta = \pi/3\) and \(p_2\) corresponds to \(\alpha = \beta = 5\pi/3\).

Recall that \(R\) is homeomorphic to \(D(1) \bigsqcup D(2)/\sim\). Hence we have the following:

Proposition 2.4. \(R\) is homeomorphic to \(\Sigma_2 - \{p_1^{(1)}, p_1^{(2)}, p_2^{(1)}, p_2^{(2)}\}\), where \(\Sigma_2\) is the Riemannian surface of genus 2 and \(\{p_1^{(1)}, p_1^{(2)}\}\) are copies of \(p_1\), \(\{p_2^{(1)}, p_2^{(2)}\}\) copies of \(p_2\).

Next we shall investigate the case of (iii), i.e. the situation around \(p_1^{(1)}, p_1^{(2)}, p_2^{(1)}\) and \(p_2^{(2)}\) in \(R\). We think of a small closed neighborhood of \(p_1^{(1)}\) as \(CS^1 - \{p_1^{(1)}\}\), where \(CS^1\) is the cone of \(S^1\) and the vertex corresponds to \(p_1^{(1)}\). We also consider a small closed neighborhood of \(p_1^{(2)}\) in the same manner. Then by the insights (i) and (iii), it is clear that the topology around \(p_1^{(1)}\) and \(p_1^{(2)}\) is given by the following: First consider \(CS^1 \vee CS^1\) (\(=\) one point union of two \(CS^1\)'s attached by the vertices). Then replace the vertex by \(S^1\).

Note that \(CS^1 \vee CS^1\) changes into \(S^1 \times [0, 1]\) by this operation. Hence we have proved that the topology around \(p_1^{(1)}\) and \(p_1^{(2)}\) is \(S^1 \times [0, 1]\).
If we consider the situation around $p_2^{(1)}$ and $p_2^{(2)}$ in the same manner, then we have the following:

Proposition 2.5. Let M' be Σ_2 attached with two $S^1 \times [0,1]$'s in some manner. Then M is homeomorphic to M'.

Finally we prove that M is orientable. In order to do this, we shall investigate how two $S^1 \times [0,1]$'s are attached to Σ_2.

We cut off a small open neighborhood of the vertex in CS^1 and write the remaining subspace of CS^1 by $S^1 \times [0,1-\epsilon]$, where $\epsilon > 0$ is small enough. Note that the $S^1 \times [0,1]$ around $p_1^{(1)}$ and $p_1^{(2)}$ is obtained by $S^1 \times [0,1-\epsilon] \bigsqcup S^1 \times [0,1-\epsilon]/\sim$, where \sim is induced by a homeomorphism $g : S^1 \times \{1-\epsilon\} \to S^1 \times \{1-\epsilon\}$. (c.f. the identification of R with $D^{(1)} \bigsqcup D^{(2)}/\sim$). We think of g as $g : S^1 \to S^1$. Then g is given by the following:

Lemma 2.6. g is homotopic to the antipodal map.

Proof. Note that $CS^1 - \{\text{vertex}\}$ is parametrized by α, β, and the freedom S^1 in the case (iii) is of course parametrized by x_2. Moreover note that x_2 and x'_2 corresponds to each other in the case (i). By using these facts, it is easy to see that g is homotopic to the antipodal map.

If we consider the situation around $p_2^{(1)}$ and $p_2^{(2)}$ in the same manner, then finally we have the following:

Theorem 2.7. Let X be $T^2 - \{e_1^2, e_2^2, e_3^2\}$, where $\{e_1^2, e_2^2, e_3^2\}$ are small open disks. Then M' is homeomorphic to $X \bigsqcup X / \cong$, where \cong is meant to identify the boundaries of two X's via one identity map.
and two maps which are homotopic to the antipodal map.

Note that antipodal map preserves orientation. Hence it is easy to see that M is orientable.

This completes the proof of Theorem 1.

References

Department of Mathematics
College of Science
University of the Ryukyus
Nishihara-Cho, Okinawa 903-01
Japan