<table>
<thead>
<tr>
<th>Title</th>
<th>On \mathfrak{F}-reducers in Finite Solvable Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakazato, Haruo</td>
</tr>
<tr>
<td>Citation</td>
<td>琉球大学理工学部紀要 (理学編) = Bulletin of Science & Engineering Division, University of Ryukyus. Mathematics & natural sciences (24): 21-27</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/20.500.12000/24498</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
On \(\mathfrak{F} \)-reducers in Finite Solvable Groups

Haruo NAKAZATO*

1. INTRODUCTION. In this note all groups are finite and solvable. The letter \(G \) stands always for such a group. A. Mann constructed in [3], for any subgroup \(H \) of \(G \), a subgroup \(Q(H) \) which gives a different characterization of the reducer \(R(H) \) in \(G \) of \(H \), defined by B. Fischer, and he defined in [4] another subgroup \(M(H) \) by using a certain concept of equivalence introduced by R. Carter. In [5] he provided an alternative characterization of the Carter subgroups of \(G \) as nilpotent subgroups \(H \) of \(G \) satisfying \(H= M(H) \).

In [1] C. J. Graddon introduced the concept of the \(\mathfrak{F} \)-reducer \(R(H; \mathfrak{F}) \) in \(G \) of a subgroup \(H \) of \(G \) by defining \(\mathfrak{F} \)-basis of \(G \), which gives an alternative characterization of \(Q(H; \mathfrak{F}) \) which is a generalization of the work of A. Mann [3], and showed some of the basic properties of this subgroup, where \(\mathfrak{F} \) is the local (saturated) formation defined by a set of nonempty subgroup closed formations \(\{ \mathfrak{F}(p) \} \). He showed in [1] that the \(\mathfrak{F} \)-projector of \(G \) are characterized as the \(\mathfrak{F} \)-subgroup \(H \) of \(G \) satisfying \(H= R(H; \mathfrak{F}) \).

In this note we give, for a certain subgroup \(H \) of \(G \), an alternative characterization of the \(\mathfrak{F} \)-reducer \(R(H; \mathfrak{F}) \) of \(H \) in \(G \) as the subgroup \(M(H; \mathfrak{F}) \) which is similar to the subgroup \(M(H) \) introduced by A. Mann, and show some properties of \(\mathfrak{F} \)-reducer \(R(H; \mathfrak{F}) \) of \(H \) in \(G \). In section 2 we give a brief resume of the definitions and properties which we require later in this note, and in section 3 we show some properties of \(\mathfrak{F} \)-subnormal subgroups of \(G \).

2. PRELIMINARIES. We shall wherever possible, adhere to the notation used in [1]. Throught this note, \(\mathfrak{F} \) will denote the integrated formation defined locally by the nonempty subgroup closed formations\(\{ \mathfrak{F}(p) \} \). Let \(\{ S^p \} \) be a set of Sylow \(p \)-complements of \(G \), one for each prime \(p \) dividing \(|G| \), and let \(\mathfrak{S} \) be a Sylow system of \(G \) generated by the \(S^p \). Then the \(\mathfrak{F} \)-basis of \(G \) associated with \(\mathfrak{S} \) is the collection \(\mathfrak{F}(\mathfrak{S})= \{ S^p \cap G_\mathfrak{F}(p) \} \) of subgroups of \(G \), where for each prime \(p \), \(G_\mathfrak{F}(p) \) denotes the \(\mathfrak{F}(p) \)-residual of \(G \), i.e., the smallest normal subgroup of \(G \) with the factor in \(\mathfrak{F}(p) \). Let \(H \) be a subgroup of \(G \), then, as in [1], \(\mathfrak{F}(\mathfrak{S}) \) reduces into \(H \) if for each prime \(p \), \(S^p \cap H_\mathfrak{F}(p)= S^p \cap G_\mathfrak{F}(p) \cap H_\mathfrak{F}(p) \) is a Sylow \(p \)-complement of \(H_\mathfrak{F}(p) \), i.e., if \(S^p \cap H_\mathfrak{F}(p) \) is an \(\mathfrak{F} \)-basis of \(H \).

Thus \(\mathfrak{F}(\mathfrak{S}) \) reduces into \(H \) if and only if there exists a Sylow system \(\mathfrak{S}_H= \{ H^p \} \) of \(H \) such that \(S^p \cap H_\mathfrak{F}(p)= H^p \cap H_\mathfrak{F}(p) \) for each prime \(p \). In [1] C. J. Graddon showed

*Dept. of Mathematics Univ. of the Ryukyus
that there always exists at least one \mathfrak{F}-basis of G which reduces into H and defined, for given such an \mathfrak{F}-basis $\mathfrak{F}(\mathcal{S})$, the \mathfrak{F}-reducer of H in G to be the subgroup

$$R(H; \mathfrak{F}) = \langle g \in G : \mathfrak{F}(\mathcal{S})^g \text{ reduces into } H \rangle$$

DEFINITION. A maximal subgroup M of G, of index powers of a prime p in G, is said to be \mathfrak{F}-normal in G if $M/\text{Core}(M) \in \mathfrak{F}(p)$. M is said to be \mathfrak{F}-abnormal otherwise. A subgroup H of G is \mathfrak{F}-abnormal in G if every link in each maximal chain joining H to G is \mathfrak{F}-abnormal. H is said to be \mathfrak{F}-subnormal in G if every link in some maximal chain joining H to G is \mathfrak{F}-normal.

In [2] it is described that, for a subgroup H of G

(2.1) H is \mathfrak{F}-subnormal in G if and only if every \mathfrak{F}-basis of G reduces into H.

The following two results are showed by C. J. Graddon in [1]:

(2.2) H is an \mathfrak{F}-abnormal subgroup of G if and only if $H = R(H; \mathfrak{F})$.

(2.3) If H is a subgroup of G, then $R(H; \mathfrak{F})$ is self \mathfrak{F}-reducing in G.

Let \mathcal{Q} be the collection of \mathfrak{F}-bases of G and let \mathcal{M} be the set of elements of \mathcal{Q} which reduces into the subgroup H of G. Let \mathcal{M}_0 be the block generated by \mathcal{M} in \mathcal{Q}. Then $\mathcal{Q}(H; \mathfrak{F})$ is defined to be the set stabilizer in G of \mathcal{M}_0, i.e., the set of all elements g in G such that $(\mathcal{M}_0)^g = \mathcal{M}_0$.

C. J. Graddon showed in [2] that

(2.4) Every \mathfrak{F}-bases of G which reduces into the subgroup H of G also reduces into $R(H; \mathfrak{F})$.

(2.5) \mathcal{M}_0 is the set of \mathfrak{F}-bases of G which reduces into $R(H; \mathfrak{F})$.

and in [1] that

(2.6) For each subgroup H of G, $R(H; \mathfrak{F}) = \mathcal{Q}(H; \mathfrak{F})$.

Let H be a subgroup of G. Then an H-composition series of G is a series

$$1 = G_n < G_{n-1} < \cdots < G_1 < G_0 = G$$

in which each subgroup G_i is a maximal H-invariant normal subgroup of G_{i-1}. We say that the factor G_i/G_{i+1} is \mathfrak{F}-central if $A_{\mathfrak{F}}(G_i/G_{i+1})$, the automorphism group induced by H on G_i/G_{i+1}, belongs to the formation $\mathfrak{F}(p)$, where G_i/G_{i+1} is an elementary abelian p-group. If this is not the case we say this factor is \mathfrak{F}-eccentric.

The following result is the structure theorem of $R(H; \mathfrak{F})$, which is obtained by C. J. Graddon in [2].

(2.7) Let H be a subgroup of G. Then (i) $R(H; \mathfrak{F})$ covers each \mathfrak{F}-central H-composition factor of G, and (ii) if K is a subgroup of G which contains H and covers every \mathfrak{F}-central H-composition factor of G, then K contains $R(H; \mathfrak{F})$.

DEFINITION. Suppose that $H \leq K \leq G$. Then K is an \mathfrak{F}-subnormalizer of H in G if

(i) H is \mathfrak{F}-subnormal in K, and

(ii) Whenever H is \mathfrak{F}-subnormal in a subgroup L of G, then L is contained
The following facts follows from theorem 4.6 of [2].

\[(2.8)\] If \(H\) is a subgroup of \(G\) and the set of \(\mathfrak{F}\)-bases of \(G\) which reduce into \(H\) forms a block then \(R(H;\mathfrak{F})\) is an \(\mathfrak{F}\)-subnormalizer of \(H\) in \(G\).

3. \(\mathfrak{F}\)-SUBNORMAL. We show some properties of \(\mathfrak{F}\)-subnormal subgroups of \(G\).

Proposition 1. Suppose that \(H \leq K \leq G\). If \(H\) is \(\mathfrak{F}\)-subnormal in \(G\), then \(H\) is \(\mathfrak{F}\)-subnormal in \(K\).

Proof. Let \(\mathfrak{F}(\mathcal{S}_K)\) be an \(\mathfrak{F}\)-basis of \(K\) associated with a Sylow system \(\mathcal{S}_K = \{\mathcal{K}_p\}\) of \(K\). Then there exists a Sylow system \(\mathcal{S} = \{\mathcal{S}_p\}\) of \(G\) which is an extension of \(\mathcal{S}_K\), i.e., \(\mathcal{K}_p = \mathcal{S}_p \cap K\) for each prime \(p\). Now \(\mathfrak{F}(\mathcal{S})\) is an \(\mathfrak{F}\)-basis of \(G\). Since \(H\) is \(\mathfrak{F}\)-subnormal in \(G\), \(\mathfrak{F}(\mathcal{S})\) reduces into \(H\) by (2.1). Then there exists a Sylow system \(\mathcal{S}_H = \{\mathcal{H}_p\}\) of \(H\) such that \(\mathcal{S}_p \cap \mathcal{H}_p = \mathcal{H}_p \cap \mathcal{H}_{\mathfrak{S}(p)}\), for each prime \(p\). Therefore we have that

\[
\mathcal{K}_p \cap \mathcal{H}_{\mathfrak{S}(p)} = (\mathcal{S}_p \cap K) \cap \mathcal{H}_{\mathfrak{S}(p)} = \mathcal{S}_p \cap \mathcal{H}_{\mathfrak{S}(p)} = \mathcal{H}_p \cap \mathcal{H}_{\mathfrak{S}(p)}
\]

for each prime \(p\), and thus \(\mathfrak{F}(\mathcal{S}_K)\) reduces into \(H\). This implies that \(H\) is \(\mathfrak{F}\)-subnormal in \(K\).

Proposition 2. Let \(H\) be a subgroup of \(G\) and suppose that \(\mathfrak{F}(\mathcal{S})\) is an \(\mathfrak{F}\)-basis of \(G\) which reduce into \(H\). If \(K\) is an \(\mathfrak{F}\)-subnormal subgroup of \(H\), then \(\mathfrak{F}(\mathcal{S})\) reduces into \(K\).

Proof. Since \(\mathfrak{F}(\mathcal{S}) = \{\mathcal{S}_p \cap G_{\mathfrak{S}(p)}\}\) reduce into \(H\), there exists a Sylow system \(\mathcal{S}_H = \{\mathcal{H}_p\}\) of \(H\) such that \(\mathcal{S}_p \cap \mathcal{H}_p = \mathcal{H}_p \cap \mathcal{H}_{\mathfrak{S}(p)}\), for each prime \(p\). Therefore if \(K\) is \(\mathfrak{F}\)-subnormal in \(H\), \(\mathfrak{F}(\mathcal{S}_H)\) reduces into \(K\) by (2.1), i.e., there exists a Sylow system \(\mathcal{S}_K = \{\mathcal{K}_p\}\) of \(K\) such that \(\mathcal{H}_p \cap \mathcal{K}_p = \mathcal{K}_p \cap \mathcal{K}_{\mathfrak{S}(p)}\), for each prime \(p\). Since \(\mathfrak{F}(\mathcal{P})\) is subgroup closed, we know that \(K \leq H\) implies \(K_{\mathfrak{S}(p)} \leq H_{\mathfrak{S}(p)}\). Now we have that, for each prime \(p\),

\[
\mathcal{S}_p \cap \mathcal{K}_{\mathfrak{S}(p)} = (\mathcal{S}_p \cap \mathcal{H}_{\mathfrak{S}(p)}) \cap K_{\mathfrak{S}(p)} = (\mathcal{H}_p \cap \mathcal{H}_{\mathfrak{S}(p)}) \cap K_{\mathfrak{S}(p)}
\]

Thus \(\mathfrak{F}(\mathcal{S})\) reduces into \(K\).

Proposition 3. Let \(H\) be a subgroup and \(N\) a normal subgroup of \(G\). Suppose that \(H\) is \(\mathfrak{F}\)-subnormal in \(G\). Then \(HN/N\) is \(\mathfrak{F}\)-subnormal in \(G/N\) and \(HN\) is \(\mathfrak{F}\)-subnormal in \(G\).

Proof. Now each \(\mathfrak{F}\)-basis of \(G/N\) is \(\mathfrak{F}(\mathcal{S}/N)\) for some Sylow system \(\mathcal{S}\) of \(G\), where \(\mathcal{S}/N = \{\mathcal{S}_p \cap N\}/N\) is a Sylow system of \(G/N\) for the Sylow system \(\mathcal{S} = \{\mathcal{S}_p\}\) of \(G\). Suppose that \(H\) is \(\mathfrak{F}\)-subnormal in \(G\). Then every \(\mathfrak{F}\)-bases \(\mathfrak{F}(\mathcal{S})\) of \(G\) reduce into \(H\). Therefore we have that \(\mathcal{S}_p \cap H_{\mathfrak{S}(p)} = \mathcal{H}_p \cap H_{\mathfrak{S}(p)}\) for each Sylow \(p\)-complement \(H_p\) of \(H\), and so by (2.5) and (2.6) of [1].
Nakazato: On \mathfrak{F}—reduces in Finite Solvable Groups

\[(S^p N / N) \cap (H N / N)_{\mathfrak{F}(p)} = (S^p N / N) \cap (H_{\mathfrak{F}(p)} N / N) = (S^p N \cap H_{\mathfrak{F}(p)} N) / N = (S^p N \cap H_{\mathfrak{F}(p)} N) / N = (H^p N / N) \cap (H_{\mathfrak{F}(p)} N / N) = (H N / N)^p \cap (H N / N)_{\mathfrak{F}(p)}.\]

Therefore every \mathfrak{F}—basis $\mathfrak{F}(\mathcal{C} N / N)$ of G / N reduces into $H N / N$. Hence $H N / N$ is \mathfrak{F}—subnormal in G / N by (2.1).

Let $H N / N = G_r / N < \cdots < G_0 / N = G / N$

be a maximal chain joining $H N / N$ to G / N such that G / N is an \mathfrak{F}—normal maximal subgroup of G_r / N. Now G_t is a maximal subgroup of G_r / N if and only if G_t / N is a maximal subgroup of G_r / N. On the other hand, since $\text{Core}_{G_r / N}(G / N) = \text{Core}_{G_r / N}(G / N)$, it follows that G_t is \mathfrak{F}—normal in G_r / N if and only if G_t / N is \mathfrak{F}—normal in G_r / N. Therefore we have a maximal chain joining $H N$ to G such that every normal link is \mathfrak{F}—normal:

\[H N = G_r < \cdots < G_0 = G.\]

Thus $H N$ is \mathfrak{F}—subnormal in G.

4. \mathfrak{F}—REDUCER. Suppose that \mathfrak{F} is an integrated formation defined locally by the nonempty subgroup closed formations $\{\mathfrak{F}(p)\}$.

Lemma 4. Let $H \leq K \leq G$ and $\mathfrak{F}_K = \{K^p\}$ be a Sylow system of K. Suppose that $\mathfrak{F} = \{S^p\}$ is a Sylow system of G which is an extension of \mathfrak{F}_K, i.e., $S^p \cap K = K^p$ for each prime p. Then the \mathfrak{F}—basis $\mathfrak{F}(\mathfrak{F}_K)$ of K reduces into H if and only if the \mathfrak{F}—basis $\mathfrak{F}(\mathfrak{F})$ of G reduces into H.

Proof. Suppose that $\mathfrak{F}(\mathfrak{F}_K) = \{K^p \cap S_{\mathfrak{F}(p)}\}$ reduces into H. Then there exists a Sylow system $\mathfrak{F}_H = \{H^p\}$ of H such that $K^p \cap H_{\mathfrak{F}(p)} = H^p \cap H_{\mathfrak{F}(p)}$ for each prime p. Thus we have that $S^p \cap H_{\mathfrak{F}(p)} = S^p \cap S_{\mathfrak{F}(p)} = K^p \cap H_{\mathfrak{F}(p)} = H^p \cap H_{\mathfrak{F}(p)}$ for each prime p. Therefore $\mathfrak{F}(\mathfrak{F})$ reduces into H.

Conversely, suppose that $\mathfrak{F}(\mathfrak{F}) = \{S^p \cap G_{\mathfrak{F}(p)}\}$ reduces into H. Then there exists a Sylow system $\mathfrak{F}_H = \{H^p\}$ of H such that $S^p \cap H H^p \cap H_{\mathfrak{F}(p)} = S^p \cap H_{\mathfrak{F}(p)} = H^p \cap H_{\mathfrak{F}(p)}$ for each prime p. Thus we have that $K^p \cap H_{\mathfrak{F}(p)} = S^p \cap K \cap H_{\mathfrak{F}(p)} = S^p \cap H_{\mathfrak{F}(p)} = H^p \cap H_{\mathfrak{F}(p)}$ for each prime p. Therefore $\mathfrak{F}(\mathfrak{F}_K)$ reduces into H.

Definition. Two subgroups H, K of G are termed \mathfrak{F}—equivalent, denoted $H \sim K$, if the set of \mathfrak{F}—bases of G reducing into H is the same as the set of \mathfrak{F}—bases of G reducing into K.

Remark. If we take $\mathfrak{F}(p) = \{\text{the class of unit groups}\}$, for all primes p, then $\mathfrak{F} = \mathfrak{N}$, where \mathfrak{N} is the class of finite nilpotent groups, and the above definition is just the definition due to R. Carter, of equivalency of two subgroups of G. (see,
Proposition 5. Let H and K be two subgroups of G. If $H \approx K$ in G, then H is \(\mathfrak{F} \)-subnormal in \(<H, K> \).

Proof. If every \(\mathfrak{F} \)-basis of G reduces into H, then H is \(\mathfrak{F} \)-subnormal in G by (2.1). Therefore H is \(\mathfrak{F} \)-subnormal in \(<H, K> \) by proposition 1. Thus, if \(\mathfrak{M} \) is the set of every \(\mathfrak{F} \)-basis of G reducing into H, we can assume that \(\mathfrak{M} \) does not contain all \(\mathfrak{F} \)-bases of G. Let L be the stabilizer of \(\mathfrak{M} \) in G, i.e.,

\[
L = \{ g \in G \mid \mathfrak{M} = \mathfrak{M}^g \}.
\]

Now let \(\mathfrak{F}(\mathfrak{E}) \) be an \(\mathfrak{F} \)-basis of G reducing into H, i.e., \(\mathfrak{F}(\mathfrak{E}) \in \mathfrak{M} \). For $h \in H$, since \((S^p)^h \cap H_{S^p} = (S^p \cap H_{S^p})^h = (S^p \cap H_{S^p})^h = (H^p \cap H_{S^p})^h = (H^p \cap H_{S^p})^h \) for each prime p, where $S^p \in \mathfrak{E}$ and H^p is Sylow p-complement of H, \(\mathfrak{F}(\mathfrak{E})^h = \mathfrak{F}(\mathfrak{E}^h) \) reduces into \(H = H^h \). Therefore \(\mathfrak{M} = \mathfrak{M}^h \) and hence H is a subgroup of L. Since $H \approx K$ in G, \(\mathfrak{M} \) is the set of all \(\mathfrak{F} \)-bases of G reducing into K and hence, by the same reason as above, K is a subgroup of L. Let \(\mathfrak{F}(\mathfrak{E}') \) be any \(\mathfrak{F} \)-basis of G. Then, since any two \(\mathfrak{F} \)-bases of G are conjugate in G, there is g in G such that \(\mathfrak{F}(\mathfrak{E}) = \mathfrak{F}(\mathfrak{E}')^g \). Now suppose that $L = G$. Then \(\mathfrak{F}(\mathfrak{E}') \) reduces into H which contradicts the hypotheses of \(\mathfrak{M} \), since L is the stabilizer of \(\mathfrak{M} \). Thus $L \neq G$.

If \(\mathfrak{F}(\mathfrak{E}_L) \) is an \(\mathfrak{F} \)-basis of L reducing into H, then, for a Sylow system \mathfrak{E} of G which is the extension of \mathfrak{E}_L, \(\mathfrak{F}(\mathfrak{E}) \) is an \(\mathfrak{F} \)-basis of G reducing into H by lemma 4. Since $H \approx K$ in G, \(\mathfrak{F}(\mathfrak{E}) \) reduces into K. Hence \(\mathfrak{F}(\mathfrak{E}_L) \) reduces into K by lemma 4. Similary, if \(\mathfrak{F}(\mathfrak{E}_L) \) is an \(\mathfrak{F} \)-basis of L reducing into K, then \(\mathfrak{F}(\mathfrak{E}_L) \) reduces into H. Therefore $H \approx K$ in L. We will prove the proposition by using induction on the group order. Since $|L| < |G|$, we see that, by working on L, H is \(\mathfrak{F} \)-subnormal in \(<H, K> \).

Lemma 6. Let H be a subgroup of G. Let \mathfrak{M} be the set of all \(\mathfrak{F} \)-bases of G reducing into H and L be the stabilizer of \mathfrak{M}. Then H is an \(\mathfrak{F} \)-subnormal subgroup of L.

Proof. In the proof of above proposition, we showed that H is a subgroup of L. Let $\mathfrak{F}(\mathfrak{E}_L)$ be any \(\mathfrak{F} \)-basis of L. Then there exists a Sylow system \mathfrak{E} of G which is an extension of the Sylow system \mathfrak{E}_L of L. Now \mathfrak{E}_L reduces into some conjugate of H in L, say H'. Hence \mathfrak{E} reduces into H' by lemma 4. Therefore \mathfrak{E}' reduces into H and $\mathfrak{F}(\mathfrak{E})^g = \mathfrak{F}(\mathfrak{E}')^g$ reduces into H. Since L is the stabilizer of \mathfrak{M}, $\mathfrak{F}(\mathfrak{E})$ reduces into H and hence $\mathfrak{F}(\mathfrak{E}_L)$ reduces into H by lemma 4. Thus H is \mathfrak{F}-subnormal in L by (2.1).

We need the following result of H. Wielandt. A subgroup H of G is said to be subnormal in G if H is \mathfrak{F}-subnormal in G for $\mathfrak{F} = \mathfrak{M}$.

Lemma 7. [6, Theorem 6.5] If H and K are subnormal subgroups of G, then $\langle H, K \rangle$ is a subnormal subgroup of G.

Definition in [4]).
PROPOSITION 8. Let H be a subgroup of G. Let \mathcal{W} be the set of all \mathfrak{g}-bases of G reducing into H and L be the stabilizer in G of \mathcal{W}. Suppose that \mathcal{W} forms a block. Then if H is subnormal in L, the equivalence class which contains H has a maximal element.

PROOF. We will show that, if $H \sim K$ in G, then $H \sim <H,K>$ in G. Then it follows that $M(H;\mathfrak{g})= <K,H \sim K$ in G. K is a subgroup of G is a maximal element in the equivalence class which contains H.

Let $\mathfrak{a}(\mathfrak{a})$ be any \mathfrak{g}-basis of G reducing into $<H,K>$. Since $H \sim K$ in G, H is \mathfrak{g}-subnormal in $<H,K>$ by proposition 5 and hence $\mathfrak{a}(\mathfrak{a})$ reduces into H by proposition 2. Therefore we need show that any \mathfrak{g}-basis reducing into H reduces into $<H,K>$.

Let $\mathfrak{a}(\mathfrak{a})$ be any \mathfrak{g}-basis of G reducing into H, i.e., $\mathfrak{a}(\mathfrak{a}) \in \mathcal{W}$. Then $\mathfrak{a}(\mathfrak{a})$ reduces into L^g for some $g \in G$. Since H is \mathfrak{g}-subnormal in L by lemma 6, H^g is \mathfrak{g}-subnormal in L^g. Therefore $\mathfrak{a}(\mathfrak{a})$ reduces into H^g and $\mathfrak{a}(\mathfrak{a}) \in \mathcal{W} \cap \mathfrak{w}^g$. Thus, since \mathfrak{w} is a block, $\mathfrak{w}=\mathfrak{w}^g$ and hence $g \in L$ and so $\mathfrak{a}(\mathfrak{a})$ reduces into L. Since H is a subnormal subgroup of L, K is a subnormal subgroup of L and hence $<H,K>$ is subnormal in L by lemma 7. Therefore $\mathfrak{a}(\mathfrak{a})$ reduces into $<H,K>$ by proposition 2.

LEMMA 9. Let H be a subgroup of G. Suppose that the set of all \mathfrak{g}-bases of G reducing into H forms a block. Then $H \sim R(H;\mathfrak{g})$ in G.

PROOF. This lemma follows from the definition of \mathfrak{g}-equivalent and (2.5).

PROPOSITION 10. Let H be a subgroup of G. Let \mathcal{W} be the set of all \mathfrak{g}-bases of G reducing into H and L be the stabilizer in G of \mathcal{W}. Suppose that H is subnormal in L and \mathcal{W} forms a block. Then we have that $M(H;\mathfrak{g})=R(H;\mathfrak{g})$.

PROOF. Since \mathcal{w} is a block, we have $R(H;\mathfrak{g})=Q(H;\mathfrak{g})=L$ by (2.6). Now by lemma 9, $H \sim R(H;\mathfrak{g})$ in G, and hence we have $R(H;\mathfrak{g}) \subseteq M(H;\mathfrak{g})$ by the construction of $M(H;\mathfrak{g})$. On the other hand, since $M(H;\mathfrak{g})$ is a subgroup of L, it follows that $M(H;\mathfrak{g}) \subseteq R(H;\mathfrak{g})$. Therefore $M(H;\mathfrak{g})=R(H;\mathfrak{g})$.

PROPOSITION 11. Let H be a subgroup of G. Suppose that the set of all \mathfrak{g}-bases of G reducing into H forms a block. Then we have that $N_G(R(H;\mathfrak{g}))=R(H;\mathfrak{g})$.

PROOF. By (2.8), $R(H;\mathfrak{g})$ is an \mathfrak{g}-subnormalizer of H in G. Therefore H is \mathfrak{g}-subnormal in $R(H;\mathfrak{g})$ and hence H is \mathfrak{g}-subnormal in $N_G(R(H;\mathfrak{g}))$ since $R(H;\mathfrak{g})$ is normal in $N_G(R(H;\mathfrak{g}))$. Thus we have $N_G(R(H;\mathfrak{g})) \subseteq R(H;\mathfrak{g})$, so that $N_G(R(H;\mathfrak{g})) = R(H;\mathfrak{g})$.

PROPOSITION 12. Let H be a subgroup of G. Suppose that the set of all \mathfrak{g}-bases of G reducing into H forms a block. Then $R(H;\mathfrak{g})$ is the least \mathfrak{g}-abnormal subgroup K of G such that every \mathfrak{g}-basis of G reducing into H reduces also into K.

PROOF. It follows from (2.2), (2.3) and (2.4) that $R(H;\mathfrak{g})$ is the \mathfrak{g}-abnormal
subgroup of G such that every \mathfrak{F}-basis of G reducing into H reduces also into $R(H;\mathfrak{F})$.

Let $\mathfrak{F}(\mathfrak{S})$ be any \mathfrak{F}-basis of G which reduces into H and let a be any element of $R(H;\mathfrak{F})$. Then, by lemma 9, $\mathfrak{F}(\mathfrak{S})^a$ is an \mathfrak{F}-basis of G which reduces into H. Now suppose K as in the theorem. Then $\mathfrak{F}(\mathfrak{S})^a$ reduces into K and thus a is in $R(K;\mathfrak{F})$. Therefore, $R(H;\mathfrak{F}) \subseteq R(K;\mathfrak{F})$. Hence we have $R(H;\mathfrak{F}) \subseteq K$ by (2.2) since K is \mathfrak{F}-abnormal and the proof is complete.

Proposition 13. Let H be a subgroup of G and let K be a subgroup of G which contains $R(H;\mathfrak{F})$. Suppose that the set of all \mathfrak{F}-bases of G reducing into H forms a block. Then $R(H;\mathfrak{F})$ is the \mathfrak{F}-reducer of H in K.

Proof. Let A/B be an \mathfrak{F}-central H-composition factor of G. Then, by (2.7), $R(H;\mathfrak{F})$ covers A/B and hence K covers A/B. Now A/B is isomorphic to $A \cap K/B \cap K$ as H-groups, so therefore $A \cap K/B \cap K$ is an \mathfrak{F}-central H-composition factor of K. Thus $R_k(H;\mathfrak{F})$ covers $A \cap K/B \cap K$ by (2.7), where $R_k(H;\mathfrak{F})$ denote the \mathfrak{F}-reducer of H in K. Therefore $R_k(H;\mathfrak{F})$ covers A/B. Hence $R(H;\mathfrak{F}) \subseteq R_k(H;\mathfrak{F})$ by (2.7).

Conversely, now let $\mathfrak{F}(\mathfrak{S}_K)$ be any \mathfrak{F}-basis of K which reduces into H. Then there exists a Sylow system \mathfrak{S} of G which is extension of \mathfrak{S}_K and $\mathfrak{F}(\mathfrak{S})$ reduces into H by lemma 4. Therefore $\mathfrak{F}(\mathfrak{S})$ reduces into $R(H;\mathfrak{F})$ by (2.4), and so $\mathfrak{F}(\mathfrak{S}_K)$ reduces into $R(H;\mathfrak{F})$ by lemma 4. Thus by Proposition 12, $R_k(H;\mathfrak{F}) \subseteq R(H;\mathfrak{F})$ and the proof is complete.

References

(Received: April 30, 1977)