<table>
<thead>
<tr>
<th>Title</th>
<th>Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic (PART 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yonemori, Tokuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>琉球大学経済研究 (19): 241-278</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/20.500.12000/3131</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic

(PART II)

Tokuichi YONEMORI

ABSTRACT

This paper concerns further discussion\(^{1}\) of waiting time distribution and entropy (average uncertainty) experienced by left-turning\(^{2}\) cars that face traffic, and serve in order of arrival, and wait for service in one queue as long as necessary. The left-turning cars cross street as soon as a required gap between two cars develops. What would happen to the left-turning cars if the distances between successive cars are independently, identically distributed\(^{3}\), and the crossing time of the left-turning cars is constant, or exponentially distributed? In this paper, the GI!G!M model, the M!D!M model and M!M!M model are discussed\(^{4}\).

I. The GI!G!M\(^{5}\) model

We suppose that traffic is moving constant, and is not interrupted by

\(^{1}\)This is referred to ‘Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic’ by T. YONEMORI (1977).

\(^{2}\)‘left-turning’ could be understood as ‘right-turning’ if people keep to the left in driving.

\(^{3}\)In this paper, we only handle the case of Poisson (Markov) arrivals of left-turning cars.

\(^{4}\)To confirm the mathematical analysis of these different models, the computer simulations are fully employed (see APPENDIX A, B and C).

\(^{5}\)‘Arbitrary recurrent (General Independent) arrivals of successive cars, Arbitrary (General) crossing time of a left-turning car, and Poisson (Markov) arrivals of left-turning cars’
the left-turning cars. Consider the arrivals of successive cars occur at
epochs \(T_1, T_2, \ldots, \) with the interevent times \(X_i = T_i - T_{i-1} \) \((i = 1, 2, 3, \ldots; T_0 = 0)\) mutually independent, identically distributed positive random
variables, with a distribution function \(P\{X_i \leq t\} = F(t)\), where \(F(t) = 0 \) for \(t < 0 \) and \(F(0) < 1 \). Also in order to cross the street, a left-
turning car needs a gap between two cars of at least \(y \) time units, where
a value \(y \) is sampled from a general crossing time distribution function
\(P\{Y \leq t\} = H(t)\), where \(H(t) = 0 \) for \(t < 0 \) and \(H(0) < 1 \), at the
time of his service. Suppose the left-turning car samples a value \(x \) from
\(F(t) \) and if \(x < y \), then he is blocked. Otherwise he crosses the street.
On the otherhand, the arrivals of the left-turning cars occur at epochs
\(\tilde{T}_1, \tilde{T}_2, \ldots, \), with the interevent times \(\tilde{X}_i = \tilde{T}_i - \tilde{T}_{i-1} \) \((i = 1, 2, 3, \ldots; \)
\(\tilde{T}_0 = 0)\) mutually independent, identically distributed positive random
variables, with distributed function \(P\{\tilde{X}_i \leq t\} = A(t)\), where
\[
A(t) = \begin{cases}
1 - e^{-\alpha t} & (t \leq 0) \\
0 & (t < 0)
\end{cases} (1-1)
\]
and with the corresponding density function
\[
a(t) = \frac{d}{dt} A(t) = \alpha e^{-\alpha t} \quad (t \geq 0) (1-2)
\]
Note that \(\tilde{X}_i \) \((j = 1, 2, 3, \ldots)\) has negative exponential distribution with
mean \(E(\tilde{X}_i) = \alpha^{-1} \), and variance \(V(\tilde{X}_i) = \alpha^{-2} \). Now the probability that
the first success in crossing the street occurs after exactly \(n \) blockings
is given by \((1-p)^n p \), where \(p \) is the probability of success in crossing the
street at any particular trial. If we let \(N \) be the number of blockings
preceding the first success, then \(N \) has geometric distribution
\[
P\{N = n\} = (1-p)^n p \quad (n = 0, 1, 2, \ldots) \ldots \ldots (1-3)
\]
Notice that the random variable \(N \) has mean
\[
E(N) = q / p, \quad (1-4)
\]
and variance
\[
V(N) = q / p^2, \quad (1-5)
\]
where
\[q = 1 - p. \]
(1-6)

Similarly define the event \(E_n \) to be the event of the first success occurs after exactly \(n \) blockings for \(n = 0, 1, 2, \ldots \). Then the probability of the event \(E_n \) is
\[P(E_n) = (1 - p)^n p = q^n p. \]
(1-7)

We realize that the variables \(X_i \) (\(i = 1, 2, 3, \ldots \)) are independent of one another and their distribution is independent of \(x \) as well as \(n \). Also the variables \(\tilde{X}_i \) are independent of one another as well as \(X_i \). Now we get
\[p = P\{y < x\} = \int_{x=0}^{\infty} [1 - F(x)] dH(x). \]
(1-8)

Clearly \(q = 1 - p \).

Now define \(F^*(t) \) to be the conditional distribution of \(x \), and \(H^*(t) \) to be the conditional distribution of \(y \), we get
\[F^*(t) = \frac{P\{x < y, x < t\}}{P\{x < y\}} = \frac{1}{q} \int_{x=0}^{t} [1 - H(x)] dF(x). \]
(1-9)

and
\[H^*(t) = \frac{P\{y \leq x, y < t\}}{P\{y \leq x\}} = \frac{1}{p} \int_{y=0}^{t} [1 - F(y)] dH(y). \]
(1-10)

Denote by \(\gamma(s) \) the Laplace-Stieltjes transform of the conditional distribution function \(F^*(t) \),
\[\gamma(s) = \int_{t=0}^{\infty} e^{-st} dF^*(t) \quad (\text{Re } s \geq 0). \]
(1-11)

And also denote \(\eta(s) \) the Laplace-Stieltjes transform of the conditional distribution function \(H^*(t) \),
\[\eta(s) = \int_{t=0}^{\infty} e^{-st} \, dH^*(t). \] (1-12)

Similarly let \(\tilde{\omega}_n(s) \) to be the Laplace-Stieltjes transform of \(\tilde{W}_n(t) \), where \(\tilde{W}_n(t) \) is the service time distribution function in the event \(E_n \). Then by the convolution theorem for transforms,

\[\tilde{\omega}_n(s) = \gamma^n(s) \eta(s). \] (1-13)

Now define \(\tilde{W}(t) \) to be the (total) service time distribution function of a left-turning car, we have

\[\tilde{W}(t) = \sum_{n=0}^{\infty} P(E_n) \tilde{W}_n(t). \] (1-14)

Hence by the linearity property of transforms

\[\tilde{\omega}(s) = \sum_{n=0}^{\infty} P(E_n) \tilde{\omega}_n(t). \] (1-15)

We now let \(N_k^* \) be the number of left-turning cars in the system (including any in service, but excluding the departing left-turning car) at the instant the kth left-turning car completes service. That is, if \(T_1, T_2, \ldots \), are successive service completion points, then \(N_k^* \) is the state of the system at \(T_k + 0 \). Then by the law of total probability,

\[P\{N_{k+1} = j \} = \sum_{i=0}^{\infty} P\{N_{k+1} = j \mid N_k^* = i \} P\{N_k^* = i \} \] (1-16)

\[(j = 0, 1, 2, \ldots; k = 1, 2, \ldots), \]

During any interval of length \(t \), we have

\[P\{N_{k+1} = j \mid N_k^* = 0 \} = \int_{t=0}^{\infty} \frac{(\alpha t)^j}{j!} \, e^{-\alpha t} \, d\tilde{W}(t) \quad (j \geq 0), \] (1-17)

and

\[P\{N_{k+1} = j \mid N_k^* = i \} = \int_{t=0}^{\infty} \frac{(\alpha t)^{j-i+1}}{(j-i+1)!} \, e^{-\alpha t} \, d\tilde{W}(t) \] (1-18)

\[(i > 0, j \geq i-1), \]
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

and

\[P \{ N_{k+1} = j \mid N_k = i \} = 0 \quad (i > 0, j < i - 1). \quad (1-19) \]

Let us define

\[\tilde{P}_j = \int_{t=0}^{\infty} \frac{(\alpha t)^j}{j!} e^{-\alpha t} d\tilde{W}(t) \quad (j = 0, 1, 2, \ldots), \quad (1-20) \]

Then the transition probabilities are

\[P \{ N_{k+1} = j \mid N_k = i \} = \begin{cases} \tilde{P}_i & \text{if } i = 0 \\ \tilde{P}_{j-i+1} & \text{if } i > 0 \text{ and } j \geq i - 1 \\ 0 & \text{if } i > 0 \text{ and } j < i - 1 \end{cases} \quad (1-21) \]

Note that the transition probabilities are independent of the value of the index k, that is, are the same for every pair of successive left-turning cars. We wish to know the distribution of the number of left-turning cars left behind by an arbitrary departing car. Let \(\Pi^*_j \) be the probability that an arbitrary departing car leaves behind \(j \) other left-turning cars in the system, that has been operating for a sufficiently long period of time. From a mathematical point of view, it can be shown\(^6\) using the theory of Markov chains that a unique proper stationary distribution

\[\Pi^*_j = \lim_{k \to \infty} P \{ N_k = j \} \quad (j = 0, 1, 2, \ldots) \quad (1-22) \]

independent of the initial conditions, exist if and only if the offered load \(\rho < 1. \) (if \(\rho \geq 1 \), then \(\Pi^*_j = 0 \) for all finite \(j \).)

Equation (1—16) becomes

\[\Pi^*_j = \tilde{p}_j \Pi^*_0 + \sum_{i=1}^{j+1} \tilde{p}_{j-i+1} \Pi^*_i \quad (j = 0, 1, 2, \ldots). \quad (1-23) \]

Then the normalization equation

\[\sum_{j=0}^{\infty} \Pi^*_j = 1, \quad (1-24) \]

\(^6\) See 'Introduction to Queueing Theory' (pg.170-171) by R. B. Cooper (1972).
and equation (1—23) gives us distribution \(\{ \Pi_j^* \} \) such that

\[
\Pi_j^* = \begin{cases}
1 - \rho & \text{if } j = 0 \\
(1 - p_1^0) \prod_{i=0}^{j-1} \Pi_i^* - p_1^0 & \text{if } j = 1 \\
(1 - p_1^j) \prod_{i=0}^{j-1} - \prod_{i=0}^{j-1} p_1 & \text{if } j = 2 \\
(1 - p_1^j) \prod_{i=0}^{j-1} - \prod_{i=0}^{j-1} p_1 & \text{if } j \geq 3
\end{cases}
\] (1—25)

where

\[
\rho = a \left[(-1) \frac{d}{ds} \tilde{\omega}(s) \big|_{s=0} \right] < 1
\] (1—26)

if we let

\[
g(z) = \sum_{j=0}^{\infty} \Pi_j^* z^j
\] (1—27)

be the equilibrium probability generating function of the number of left-turning cars left behind in the system at the instant of an arbitrary left-turning car completes service and departs from the system, we get using equation (1—23)

\[
g(z) = \sum_{j=0}^{\infty} (p_j^0 \prod_{i=0}^{j} + \sum_{i=1}^{j+1} p_{j-i+1}^j \prod_{i=0}^{j-i} z^j.
\] (1—28)

If we also define

\[
\psi(z) = \sum_{j=0}^{\infty} p_j^z j^z,
\] (1—29)

we obtain from (1—28), using (1—25),

\[
g(z) = \frac{\psi(z)(z-1)}{z-\psi(z)} (1 - \rho).
\] (1—30)

Since \(\tilde{\omega}(s) \) the Laplace-Stieljes transform of \(\tilde{W}(t) \), then equation (1—15) could be also expressed by

\[
\tilde{\omega}(s) = \int_{t=0}^{\infty} e^{-st} d\tilde{W}(t).
\] (1—31)

Then the substitution of (1—20) into (1—29) yields

\[
\psi(z) = \tilde{\omega}(\alpha - \alpha z).
\] (1—32)
Therefore, equation (1—30) can be written
\[g(z) = \frac{\omega(\alpha - \alpha z)(z - 1)}{z - \omega(\alpha - \alpha z)^{\prime}} (1 - \rho) . \] (1—33)

Observing
\[\tau_n = \int_{t=0}^{\infty} t^n d\tilde{W}(t) = (-1)^n \frac{d^n}{ds^n} \tilde{\omega}(s) \bigg|_{s=0}, \] (1—34)
we denote
\[\phi^{(1)}(1) = \frac{d}{dz} \tilde{\omega}(\alpha - \alpha z) \big|_{z=1} = \alpha \int_{t=0}^{\infty} t d\tilde{W}(t) \]
\[= \alpha \left[(-1)^1 \frac{d}{ds} \tilde{\omega}(s) \big|_{s=0} \right] = \alpha \tau_1 = \rho , \] (1—35)
and
\[\phi^{(2)}(1) = \frac{d^2}{dz^2} \tilde{\omega}(\alpha - \alpha z) \big|_{z=1} = \alpha^2 \int_{t=0}^{\infty} t^2 d\tilde{W}(t) \]
\[= \alpha^2 \left[(-1)^2 \frac{d^2}{ds^2} \tilde{\omega}(s) \big|_{s=0} \right] = \alpha^2 \tau_2 , \] (1—36)
and
\[\phi^{(3)}(1) = \frac{d^3}{dz^3} \tilde{\omega}(\alpha - \alpha z) \big|_{z=1} = \alpha^3 \int_{t=0}^{\infty} t^3 d\tilde{W}(t) \]
\[= \alpha^3 \left[(-1)^3 \frac{d^3}{ds^3} \tilde{\omega}(s) \big|_{s=0} \right] = \alpha^3 \tau_3 . \] (1—37)

Now if we let \(g^{(1)}(1) = \frac{d}{dz} g(z) \big|_{z=1}, \ g^{(2)}(1) = \frac{d^2}{dz^2} g(z) \big|_{z=1}, \)
and \(\phi^{(1)}(1) = \rho , \) we get, after some manipulation of (1—33),
\[g^{(1)}(1) = \rho + \frac{\phi^{(1)}(1)}{2(1 - \rho)} = \rho + \frac{\alpha^2 \tau_2}{2(1 - \rho)} , \] (1—38)
and

-247-
Here notice that the mean \(E(N^*) \) can be obtained from the probability generating function as
\[
E(N^*) = g'(1)
\]
and the variance \(V(N^*) \) as
\[
V(N^*) = g''(1) + g'(1) - [g'(1)]^2.
\]

We turn now to the waiting time distribution function in the queue \(W_q(t) = P\{W_q \leq t\} \). Let \(W_q(t) \) have the Laplace-Stieltjes transform \(\omega_q(s) \),
\[
\omega_q(s) = \int_0^\infty e^{-st} \, dW_q(t),
\]
and denote by \(\omega(s) \) the Laplace-Stieltjes transform of the distribution function of the sojourn time (the sum of the waiting time in the queue and service time) of a left-turning car. Since the waiting time in the queue and service time are independent, we clearly get
\[
\omega(s) = \omega_q(s) \bar{\omega}(s).
\]

Since service is in arrival order, the left-turning cars left behind by the departing car must all have arrived during his sojourn time. Let \(W(t) = P\{W \leq t\} \) to be the total waiting time (sojourn time) distribution of a left-turning car in the system, and let \(p_j \) be the probability that \(j \) left-turning cars arrive during his sojourn time, we get
\[
p_j = \int_t^\infty \frac{(\alpha t)^j}{j!} \, e^{-\alpha t} \, dW(t).
\]
Since
\[
g(z) = \sum_{j=0}^{\infty} p_j z^j,
\]
we get, after substitution of (1−44) into (1−45),
\[g(z) = \omega(a - az). \] (1−46)

Using equations (1−46) and (1−33) in (1−43), we have widely known Pollaczek-Khintchin formula
\[\omega_q(s) = \frac{s(1-p)}{s - \alpha(1-\bar{\omega}(s))}, \] (1−47)
and also
\[\omega(s) = \frac{s(1-p)\bar{\omega}(s)}{s - \alpha(1-\bar{\omega}(s))}. \] (1−48)

To calculate the mean waiting time in the queue \(E(W_q) \), note
\[E(W_q) = (-1)^1 \frac{d}{ds} \omega_q(s) \bigg|_{s=0}. \] (1−49)

And since
\[E(W_q^2) = (-1)^2 \frac{d^2}{ds^2} \omega_q(s) \bigg|_{s=0}, \] (1−50)
the variance \(V(W_q) \) could be obtained from
\[V(W_q) = E(W_q^2) - E^2(W_q). \] (1−51)

It is also true for the mean total waiting time (sojourn time) in the system. Then we get
\[E(W) = (-1)^1 \frac{d}{ds} \omega(s) \bigg|_{s=0}, \] (1−52)
\[E(W^2) = (-1)^2 \frac{d^2}{ds^2} \omega(s) \bigg|_{s=0}. \] (1−53)

Clearly
\[V(W) = E(W^2) - E^2(W). \] (1−54)
Since the term \(r_n \) is given by equation (1—34), then equations (1—49) and (1—51) gives us

\[
E(W_q) = \frac{\alpha \tau_2}{2(1 - \rho)}, \quad (1-55)
\]

and

\[
V(W_q) = \frac{\alpha^2 \tau_2^2}{4(1 - \rho)^2} + \frac{\alpha \tau_3}{3(1 - \rho)}. \quad (1-56)
\]

It also follows from equation (1—52) and (1—54) that

\[
E(W) = \tau_1 + \frac{\tau_2}{2(1 - \rho)} \quad (1-57)
\]

and

\[
V(W) = (\tau_2 - \tau_1^2) + \frac{\alpha^2 \tau_2^2}{4(1 - \rho)^2} + \frac{\alpha \tau_3}{3(1 - \rho)}. \quad (1-58)
\]

We now proceed to write an equation for the entropy (average uncertainty) experienced by the left-turning cars in the system. In the previous paper (1977), we have shown that the entropy \(\nu \) experienced by a left-turning car is given by

\[
\nu = H(P(E_0), P(E_1), \ldots) = E(N) I_s + I_a, \quad (1-59)
\]

where \(I_s \), the amount of sureness-in-crossing-this-time, should be measured by

\[
I_s = \log_2(q^{-1}), \quad (1-60)
\]

and \(I_a \), the amount of anxiety in crossing,

\[
I_a = \log_2(p^{-1}). \quad (1-61)
\]

Note that \(\Pi_j^* \) is the probability that an arbitrary departing left-turning car leaves \(j \) other left-turning cars in the system, and also services are in order of arrivals. Consider first the case that the departing car leaves
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

no other left-turning cars behind. Then there exists only \(\nu \) experienced by the departing car. In the case that the departing car leaves one left-turning car, there exist \(\nu \) by the departing car, and \(2 \nu \) by the left-turning car left behind. And in the case of two left, there exist \(\nu \) by the departing car, \(2 \nu \) by the first arrived car, and \(3 \nu \) by the second arrived car. In general, in the case of fixed \(j \), there exist \(\nu \) by the departing car, \(2 \nu \) by the first arrived car, \(3 \nu \) by the second arrived car, \(\ldots \), and \((j+1) \nu \) by the (last) \(j \)th arrived car. If we define \(\nu_j \) to be the entropy in the case of \(j \) left-turning cars left behind in the system, \(\nu_j \) is given by

\[
\nu_j = \sum_{k=1}^{j+1} k \nu = \nu \sum_{k=1}^{j+1} k \quad (j \geq 0). \quad (1-62)
\]

Therefore the entropy \(\bar{\nu} \) experienced by the system could be obtained from, by the law of total probability,

\[
\bar{\nu} = \sum_{j=0}^{\infty} \Pi_j \nu_j = \nu \sum_{j=0}^{\infty} \Pi_j \left[\frac{(j+1)(j+2)}{2} \right]
\]

\[
= \frac{\nu}{2} \left[\sum_{j=0}^{\infty} j^2 \Pi_j + 3 \sum_{j=0}^{\infty} j \Pi_j + 2 \sum_{j=0}^{\infty} \Pi_j \right]
\]

\[
= \frac{\nu}{2} \left[\text{V}(N^*) + E^2(N^*) + 3 E(N^*) + 2 \right]. \quad (1-63)
\]

II The M!D!M\(^{(7)}\) model

Consider the following process. Traffic is moving constant, and the arrivals of successive cars occur at epochs \(T_1, T_2, \ldots \), with the interevent times \(X_i = T_i - T_{i-1} \) (\(i = 1, 2, \ldots; T_0 = 0 \)) mutually independent, identically distributed positive random variables, with \(P \{ X_i \leq t \} = F(t) \), where

\(^{(7)} \) ‘Poisson (Markov) arrivals of successive cars, Constant (Deterministic) crossing time of left-turning cars, Poisson (Markov) arrivals of left-turning cars’
\[
F(t) = \begin{cases}
1 - e^{-\lambda t} & (t \geq 0) \\
0 & (t < 0)
\end{cases} \tag{2-1}
\]

with
\[
f(t) = \frac{d}{dt} F(t) = \lambda e^{-\lambda t} \quad (t \geq 0). \tag{2-2}
\]

And also the crossing time is constant such that the distribution function
\[P \{ Y \leq t \} = H(t)\]
is given by
\[
H(t) = \begin{cases}
1 & (t \geq t_0) \\
0 & (t < t_0)
\end{cases} \tag{2-3}
\]
and the arrival distribution function of the left-turning cars is described
in equation (1—1). Substituting equation (2—1) and (2—3) into (1—8),
we get the probability of no blocking (or success) on left-turning such
that
\[
p = \int_{x=0}^{\infty} H(x) \, dF(x) = e^{-\lambda t_0} \tag{2-4}
\]
and
\[
q = 1 - p = 1 - e^{-\lambda t_0} \tag{2-5}
\]
Now from (1—11), we get
\[
\gamma(s) = \frac{\lambda}{s + \lambda} \frac{1 - e^{-(s+\lambda)t_0}}{1 - e^{-\lambda t_0}}, \tag{2-6}
\]
and from (1—12), we get
\[
\eta(s) = \frac{e^{-(s+\lambda)t_0}}{e^{-\lambda t_0}}, \tag{2-7}
\]
Since, from (1—13),
\[
\tilde{\omega}_n(s) = \left[\frac{\lambda}{s + \lambda} \frac{1 - e^{-(s+\lambda)t_0}}{1 - e^{-\lambda t_0}} \right]^n \left[\frac{e^{-(s+\lambda)t_0}}{e^{-\lambda t_0}} \right], \tag{2-8}
\]

Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

and, from (1—7),
\[P(E_n) = (1 - e^{-\lambda t_0})^n e^{-\lambda t_0}, \]
we get, from (1—15),
\[\tilde{\omega}(s) = \frac{(s + \lambda) e^{-(s+\lambda)t_0}}{s + \lambda e^{-(s+\lambda)t_0}}. \]

Noting that we let \(N^* \) be the random variable of the number of left-turning cars in the system (including any in service, but excluding the departing left-turning car), and also \(\Pi^*_j \) be the probability that the departing car leaves \(j \) other left-turning cars behind in the system, we obtain from (1—34)
\[\tau_1 = (-1)^1 \frac{d}{ds} \tilde{\omega}(s) \bigg|_{s=0} = \frac{e^{\lambda t_0} - 1}{\lambda}, \]
and
\[\tau_2 = (-1)^2 \frac{d^2}{ds^2} \tilde{\omega}(s) \bigg|_{s=0} = \frac{2 e^{2\lambda t_0} - 2 \lambda t_0 e^{\lambda t_0} - 2 e^{\lambda t_0}}{\lambda^2}. \]
and
\[\tau_3 = (-1)^3 \frac{d^3}{ds^3} \tilde{\omega}(s) \bigg|_{s=0} = \frac{3 e^{\lambda t_0} (2 \lambda t_0 + \lambda^2 t_0^2 - 2 e^{\lambda t_0} + 2 e^{2\lambda t_0} - 4 \lambda t_0 e^{\lambda t_0})}{\lambda^3}. \]

We have shown that the equilibrium probability generating function of the number of left-turning cars left behind in the system by the departing car is
\[g(z) = \sum_{j=0}^{\infty} \prod_{j} z^{i} \]
\[= \frac{\omega(\alpha - az)(z - 1)}{z - \omega(\alpha - az)} (1 - \rho). \] (2-14)

Then if we let \(g'(1) = \frac{d}{ds} g(z) \mid_{z=1} \), \(g''(1) = \frac{d^{2}}{ds^{2}} g(z) \mid_{z=1} \), and \(\alpha \tau_{1} = \rho \), we get
\[g'(1) = \rho + \frac{\alpha^{2} \tau_{2}}{2(1 - \rho)} \] (2-15)

and
\[g''(1) = \frac{\alpha^{2} \tau_{2}}{1 - \rho} + \frac{\alpha^{4} \tau_{2}^{2}}{2(1 - \rho)^{2}} + \frac{\alpha^{3} \tau_{3}}{3(1 - \rho)}. \] (2-16)

Therefore the mean \(E(N^{*}) \) and the variance \(V(N^{*}) \) are easily obtained from
\[E(N^{*}) = g'(1) = \rho + \frac{\alpha^{2} \tau_{2}}{2(1 - \rho)} \] (2-17)

and
\[V(N^{*}) = g''(1) + g'(1) - [g'(1)]^{2} \]
\[= \frac{\alpha^{2} \tau_{2}}{1 - \rho} + \frac{\alpha^{4} \tau_{2}^{2}}{2(1 - \rho)^{2}} + \frac{\alpha^{3} \tau_{3}}{3(1 - \rho)} \]
\[+ \rho + \frac{\alpha^{2} \tau_{2}}{2(1 - \rho)} - \left(\rho + \frac{\alpha^{2} \tau_{2}}{2(1 - \rho)} \right)^{2}. \] (2-18)

Furthermore we have shown the relationships between \(\omega(s) \), \(\omega_{q}(s) \) and \(\omega(s) \) as
\[\omega(s) = \omega_{q}(s) \omega(s), \] (2-19)
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

\[
\omega_q(s) = \frac{s(1-\rho)}{s - \alpha(1 - \tilde{\omega}(s))} \quad (2-20)
\]

\[
\omega(s) = \frac{s(1-\rho)}{s - \alpha(1 - \tilde{\omega}(s))} \quad (2-21)
\]

[See equations (1-43), (1-47), and (1-48).]

Some manipulation of (2-20) yields

\[
E(W_q) = (-1)^1 \frac{d}{ds} \omega_q(s) \bigg|_{s=0} = \frac{\alpha \tau_2}{2(1-\rho)} \quad (2-22)
\]

and

\[
V(W_q) = (-1)^2 \frac{d^2}{ds^2} \omega_q(s) \bigg|_{s=0} - E^2(W_q)
= \frac{\alpha^2 \tau_2^2}{4(1-\rho)^2} + \frac{\alpha \tau_3}{3(1-\rho)} \quad (2-23)
\]

In addition we have

\[
E(W) = (-1)^1 \frac{d}{ds} \omega(s) \bigg|_{s=0} = \tau_1 + \frac{\alpha \tau_2}{2(1-\rho)} \quad (2-24)
\]

and

\[
V(W) = (-1)^2 \frac{d^2}{ds^2} \omega(s) \bigg|_{s=0} - E^2(W)
= (\tau_2 - \tau_1^2) + \frac{\alpha^2 \tau_2^2}{4(1-\rho)^2} + \frac{\alpha \tau_3}{3(1-\rho)} \quad (2-25)
\]

Noting that, from equations (2-4), (2-5) and (1-4),

\[
E(N) = q/p = e^{\lambda t_o} - 1 \quad (2-26)
\]

and from (1-60) and (1-61),

\[
I_s = \log_2(q^{-1}) = \log_2[(1 - e^{-\lambda t_o})^{-1}] \quad (2-27)
\]

and

\[
I_a = \log_2(p^{-1}) = \log_2(e^{\lambda t_o}) \quad (2-28)
\]
we get the entropy (average uncertainty) experienced by a left-turning car
\[
\nu = H(P(E_0), P(E_1), P(E_2), \ldots)
= E(N) I_s + I_s
= (e^{4t_0} - 1) \log_2 \left[\left(1 - e^{-4t_0} \right)^{-1} \right] + \log_2 (e^{4t_0}).
\]
(2-29)

Then the entropy experienced by the system is given by, from equation (1-63),
\[
\bar{\nu} = \frac{\nu}{2} \left[V(N^*) + E^2(N^*) + 3E(N^*) + 2 \right],
\]
(2-30)

where \(\nu\) is obtained from (2-29), \(V(N^*)\) from (2-18), and \(E(N^*)\) from (2-17).

The M!M!M\(^{(8)}\) model

Consider also the following process. Traffic flow is described in equation (2—1) in the M!D!M model. Here the crossing time distribution function is \(P\{Y \leq t\} = H(t)\), where
\[
H(t) = \begin{cases}
1 - e^{-\mu t} & (t \geq 0) \\
0 & (t < 0)
\end{cases}
\]
(3-1)

with
\[
h(t) = \frac{d}{dt} H(t) = \mu e^{-\mu t} \quad (t \geq 0).
\]
(3-2)

\(^{(8)}\)Poisson (Markov) arrivals of successive cars, Exponential (Markov) crossing time of a left-turning car, Poisson (Markov) arrivals of left-turning cars
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

The arrival distribution function of the left-turning cars is given in equation (1-1). Substitution (2-1) and (3-1) into (1-8) we get the probability of no blocking (or success) on left-turning such that

\[
p = \int_{x=0}^{\infty} H(x) \, dF(x) = \int_{x=0}^{\infty} (1 - e^{-\mu x}) \lambda e^{-\lambda x} \, dx = \frac{\mu}{\lambda + \mu},
\]

and \(q \) the probability of blocking is

\[
q = 1 - p = \frac{\lambda}{\lambda + \mu}.
\]

Now from equation (1—11), we get

\[
\gamma(s) = \frac{\lambda + \mu}{s + \lambda + \mu},
\]

and also from equation (1—12), we get

\[
\eta(s) = \frac{\lambda + \mu}{s + \lambda + \mu}.
\]

Since from (1—13),

\[
\bar{\omega}(s) = \left(\frac{\lambda + \mu}{s + \lambda + \mu} \right)^n \left(\frac{\lambda + \mu}{s + \lambda + \mu} \right),
\]

and from (1—7),

\[
P(E_n) = \left(\frac{\lambda}{\lambda + \mu} \right)^n \left(\frac{\mu}{\lambda + \mu} \right),
\]

we get from (1—15)

\[
\bar{\omega}(s) = \frac{\mu}{s + \mu}.
\]

Then we obtain from equation (1—34) that

\[
\tau_1 = (-1)^1 \frac{d}{ds} \bar{\omega}(s) \bigg|_{s=0} = -\frac{-\mu}{(s + \mu)^2} \bigg|_{s=0} = \frac{1}{\mu},
\]

\[
-257-
\]
and
\[\tau_2 = (-1)^2 \frac{d^2}{ds^2} \mathcal{W}(s) \bigg|_{s=0} = \frac{2\mu}{(s + \mu)^3} \bigg|_{s=0} = \frac{2}{\mu^2}, \quad (3-11) \]
and
\[\tau_3 = (-1)^3 \frac{d^3}{ds^3} \mathcal{W}(s) \bigg|_{s=0} = \frac{6\mu}{(s + \mu)^4} \bigg|_{s=0} = \frac{6}{\mu^3}. \quad (3-12) \]

We have shown that the equilibrium probability generating function of the number of left-turning cars left behind by the departing car in the system is
\[g(z) = \frac{\mathcal{W}(\alpha - \alpha z)(z - 1)}{z - \mathcal{W}(-\alpha)} (1 - \rho). \quad (3-13) \]

Then if we let \(g'(1) = \frac{d}{dz} g(z) \bigg|_{z=1}, \ g''(1) = \frac{d^2}{dz^2} g(z) \bigg|_{z=1} \)
and \(\rho = \frac{\alpha}{\mu}, \) we get from (1-38),
\[g'(1) = \rho + \frac{2\rho^2}{2(1-\rho)} = \frac{\rho}{1-\rho} \quad (3-14) \]
and from (1-39)
\[g''(1) = \frac{2\rho^2}{1-\rho} + \frac{4\rho^4}{2(1-\rho)^2} + \frac{6\rho^3}{3(1-\rho)} \]
\[= \frac{2\rho^2}{(1-\rho)^2}. \quad (3-15) \]

Therefore using (3-14) and (3-15), the mean \(E(N^*) \) is given by
\[E(N^*) = g'(1) = \frac{\rho}{1-\rho}, \quad (3-16) \]
and the variance \(V(N^*) \) is given by
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

\[V(N^*) = g''(1) + g'(1) - \left[g'(1) \right]^2 \]

\[= \frac{2 \rho^2}{(1 - \rho)^2} + \frac{\rho}{1 - \rho} - \frac{\rho^2}{(1 - \rho)^2} \]

\[= \frac{\rho}{(1 - \rho)^2} . \quad (3-17) \]

Furthermore we have shown the relationships between \(\bar{\omega}(s) \), \(\omega_q(s) \) and \(\omega(s) \) as, from equations (1-43), (1-47) and (1-48),

\[\omega(s) = \omega_q(s) \bar{\omega}(s), \quad (3-18) \]

\[\omega_q(s) = \frac{s(1 - \rho)}{s - \alpha(1 - \bar{\omega}(s))} , \quad (3-19) \]

and

\[\omega(s) = \frac{s(1 - \rho) \bar{\omega}(s)}{s - \alpha(1 - \bar{\omega}(s))} . \quad (3-20) \]

Therefore some manipulation of (3-19) yields

\[E(W_q) = (-1)^1 \frac{d}{ds} \omega_q(s) \bigg|_{s=0} = \frac{\alpha \tau_2}{2(1 - \rho)} \]

\[= \frac{\rho}{\mu(1 - \rho)} , \quad (3-21) \]

and

\[V(W_q) = (-1)^2 \frac{d^2}{ds^2} \omega_q(s) \bigg|_{s=0} = E^2(W_q) \]

\[= \frac{1}{\mu^2} \left[\frac{2\rho - \rho^2}{(1 - \rho)^2} \right] . \quad (3-22) \]

In addition we have, from equation (1-57),

\[E(W) = (-1)^1 \frac{d}{ds} \omega(s) \bigg|_{s=0} = \frac{1}{\mu(1 - \rho)} , \quad (3-23) \]

and from (1-58),
\[V(W) = (-1)^2 \frac{d^2}{ds^2} \omega(s) \bigg|_{s=0} - E^2(W) = \frac{1}{\mu^2 (1 - \rho)^2} \]

(3-24)

It is immediately evident from (3-23) and (3-24) that the total waiting time (sojourn time) distribution \(W(t) = P\{W \leq t\} \) is exponentially distributed with mean \(1/(\mu (1 - \rho)) \); that is,

\[W(t) = 1 - e^{-\mu(1-\rho)t} \quad (t \geq 0). \]

(3-25)

This is what we expected on intuitive grounds.

Also from (1-20),

\[\bar{p}_j = \left(\frac{\alpha}{\alpha + \mu} \right)^j \left(\frac{\mu}{\alpha + \mu} \right) \quad (j \geq 0), \]

(3-26)

then we get, from equation (1-25),

\[\Pi^*_{ij} = \begin{cases} 1 - \rho = 1 - \alpha/\mu & \text{if } j = 0 \\ (1 - \rho)^j \rho = \left(1 - \alpha/\mu\right)^j \left(\alpha/\mu\right) & \text{if } j \geq 1. \end{cases} \]

(3-27)

Noting that, from (3-3), (3-4) and (1-4),

\[E(N) = \frac{\lambda}{\mu}, \]

(3-28)

and from (1-60) we get \(I_s \), the amount of sureness-in-crossing-this-time, such that

\[I_s = \log_2 (q^{-1}) = \log_2 \left(\frac{\lambda + \mu}{\lambda} \right), \]

(3-29)

and from (1-61) we get \(I_a \), the amount of anxiety in crossing,

\[I_a = \log_2 (p^{-1}) = \log_2 \left(\frac{\lambda + \mu}{\mu} \right). \]

(3-30)

Clearly the entropy (average u-certainty) experienced by a left-turning car
\[\nu = H(P(E_0), P(E_1), P(E_2), \ldots) \]

\[= E(N) I_s + I_a \]

\[= \frac{\lambda}{\mu} \log_2 \left(\frac{\lambda + \mu}{\lambda} \right) + \log_2 \left(\frac{\lambda + \mu}{\mu} \right) \]

(3-31)

implies the entropy by the system such that

\[\tilde{\nu} = \frac{\nu}{2} \left[V(N^*) + E^2(N^*) + 3 E(N^*) + 2 \right] = \frac{\nu}{(1 - \rho)^2} \]

\[= \frac{\frac{\lambda}{\mu} \log_2 \left(\frac{\lambda + \mu}{\lambda} \right) + \log_2 \left(\frac{\lambda + \mu}{\mu} \right)}{(1 - \rho)^2} . \]

(3-32)
REFERENCES

APPENDIX A

EXPLANATION of the VARIABLES

start

set zeros to initial conditions
LEFT, NTRIAL, NQUE, LEFTO, NX, NY, NZ, IND, QUE, QUE2, TX, TY, TZ, TWT

give arbitrary XX, YY, ZZ, N

write XX, YY, ZZ, N

generate X, Y, and Z using XX, YY, and ZZ

determine if the left-turning test car passes the street

Z ≥ X > Y or X > Z > Y

yes

he finally passes street

no

NQUE ≥ 1

yes

call subroutine
SUB1(1, NQUE, LEFTO, LEFT, NTRIAL, QUE, QUE2)

tno

TWT = TWT + Y

A

C

call subroutine
SUB1(2, NQUE, LEFTO, LEFT, NTRIAL, QUE, QUE2)

tno

TWT = TWT + Y

A

E

APPENDIX A

E

X > Y > Z ?

yes

while he is passing street another left-turning car joins queue

TWT = TWT + Z
NQUE = NQUE + 1
X = X - Z
Y = Y - Z

no

call subroutine
SUB2(IND, Z, ZZ, TZ, NZ, 1)

B

since he cannot pass, he waits for another trial

TWT = TWT + X

yes

generate X, Y, and Z

no

Z ≥ Y ≥ X or Y ≥ Z > X

no

X ≥ Y > Z ?

yes

when he begins next trial, he sees another left-turning car joins queue

TWT = TWT + Z
X = X - Z
NQUE = NQUE + 1
Y = Y - Z

no

Y ≥ X ≥ Z ?

yes

TWT = TWT + X
NQUE = NQUE + 1

no

Y ≥ X, X = Z ?

yes

generate X, Y, and Z

no

X > Y, Y = Z ?

yes

NQUE = NQUE + 1

F

C
write "ERROR"

stop

check if the number of trials is equal to \(N\)

\[A \quad N_{\text{TRIAL}} \geq N \]

no \(\rightarrow \) D

yes

\[XX = \text{FLOAT}(N_X)/T_X \]
\[YY = \text{FLOAT}(N_Y)/T_Y \]
\[ZZ = \text{FLOAT}(N_Z)/T_Z \]

we get the exact values of \(XX, YY, \) and \(ZZ\) in this simulation

write \(XX, YY, ZZ\)

obtain theoretical results for \(W, PBLK, \) and \(ROW\)

\[\text{ROW} \geq 1 \]

yes \(\rightarrow \) write "OVER FLOW"

stop

no

obtain theoretical results for \(EQ, HEIKIN, \) and \(VARY\)

write \(EQ, HEIKIN, VARY\)

G
APPENDIX A

G

get the simulation results for T, TV, AWT

write T, TV, AWT

compare P(0), P(1), with PAI(0), PAI(1),

stop
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

APPENDIX A

ROW : offered load ρ (for detail discussion see equation (1–26))

EQ : theoretical number of left-turning cars joining the queue from the instant an arbitrary left-turning car faces traffic till he completely crosses street (see equations (1–40), (2–17) and (3–16))

HEIKIN : theoretical mean number of left-turning cars joining the queue from the instant that an arbitrary left-turning car join the queue till he completely crosses street (see equations (1–40), (2–17) and (3–16))

VARY : theoretical variance of number of left-turning cars joining the queue from the instant that an arbitrary left-turning car joins the queue till completely crosses street (see equations (1–41), (2–18) and (3–17))

T : simulation result for the mean number of left-turning cars left behind by an arbitrary test car (compare with HEIKIN)

TV : simulation result for the variance of number of left-turning cars left behind by an arbitrary test car (compare with VARY)

AWT : simulation result for mean service time from the instant that an arbitrary left-turning car faces traffic till he completely crosses street (compare with W)

PAI(k) : theoretical probabilities that the departing left-turning car leaves k other left-turning cars behind in the system

P(k) : simulation result for the probabilities that the departing left-turning cars behind in the system

LEFT(k) : number of cases that k left-turning cars left behind in the system by an arbitrary test car

NTRIAL : number of trials in the simulation such that $0 \leq \text{NTRIAL} \leq \text{N}$

NQUE : number of left-turning cars in the queue excluding the test car

LEFTO : number of cases that no left-turning car left behind in the system by an arbitrary test car

NX, NY, NZ : number of times that X, Y, and Z are generated

TX, TY, TZ : total time units for X, Y, and Z in this simulation

-267-
APPENDIX A

TWT : total (accumulated) waiting time experienced by the whole left-turning cars appeared in this simulation

IND : dummy variable (index) to generate a random number

XX : arrival rate (cars/sec) of successive cars

X : time of next arrival of successive cars (sec/car)

YY-1 : crossing (street) rate (cars/sec) of left-turning cars given that no blocking is seen by the successive cars

Y : crossing (street) time of a left-turning car

ZZ : arrival rate of left-turning cars (cars/sec)

Z : time of next arrival of left-turning cars (sec/car)

N : number of trials in this simulation

W : mean service time of a left-turning car from the instant that he faces traffic till he completely crosses street

V : theoretical variance of service time of a left-turning car from the instant he faces traffic till he completely crosses street

PBLK : the probability of blocking
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

APPENDIX B

SOURCE PROGRAM

MIDIM Model

--- THIS IS THE MIDIM MODEL ---

This simulation obtains the mean and variance of number of left-turning cars left behind by a left-turning test car in the MIDIM model (Poisson (Markov) arrivals of successive cars. Constant (deterministic) crossing time of a left-turning car. Poisson arrivals of left-turning cars).

XX determines X, time of next arrival of successive cars
YY determines Y, crossing time of left-turning cars
ZZ determines Z, time of next arrival of left-turning car

XX, YY, and ZZ could have some values between 5 cars/min (0.1 car/sec) and 55 cars/min (0.9 cars/sec)

Dimension Left(100)

--- SET INITIAL CONDITIONS ---

For detail discussion of variables, see Appendix A

Data Left, NTRIAL, NQUE, LEFT0, NX, NY, NZ, IND/100*0.7*0/
Data QUE, QUE2, TX, TY, TZ, TWT/6*0.0/

--- GIVE ARBITRARY VALUES FOR XX, YY, ZZ, AND N ------

READ(1,73)XX, YY, ZZ, N
73 FORMAT(3F3.1,13)
WRITE(2,74)XX, YY, ZZ, N
74 FORMAT(2X,3HXX=.F3.1,2X.3HYY=,11X.17HNUMBER OF TRIALS=,I5/)

--- GENERATE X, Y, AND Z ----

98 CALL SUB2(IND, X, XX, TX, NX, 1)
CALL SUB2(IND, Y, YY, TY, NY, 2)
CALL SUB2(IND, Z, ZZ, TZ, NZ, 1)

--- CHECK WHAT HAPPENS TO THE LEFT-TURNING CAR ----

99 CONTINUE
IF(Z.GE.X AND X.GT.Y) GOTO 1
IF(X.GT.Z AND Z.GT.Y) GOTO 1
IF(X.GT.Y AND Y.GT.Z) GOTO 6
IF(Z.GT.Y AND Y.GE.X) GOTO 4
IF(Y.GE.Z AND Z.GT.X) GOTO 4
IF(Y.GE.X AND X.GT.Z) GOTO 7
IF(Y.GE.X AND X.EQ.Z) GOTO 8
IF(X.GT.Y AND Y.EQ.Z) GOTO 9
WRITE(2,111)
111 FORMAT(5X,5HERROR/)
GOTO 1110
C-----THE LEFT-TURNING TEST CAR FINALLY PASSES STREET-----

C
1 IF(NQUE) 101, 101, 102
101 CALL SUB1(NQUE, LEFT0, LEFT, NTRIAL, QUE, QUE2)
 TWT=TWT+Y
 G0 TO 97
102 CALL SUB2(NQUE, LEFT0, LEFT, NTRIAL, QUE, QUE2)
 TWT=TWT+Y
 G0 TO 97

C-----WHILE HE IS PASSING STREET, ANOTHER LEFT-TURNING
C CAR JOIN THE QUEUE-------

C
6 TWT=TWT+Z
 NQUE=NQUE+1
 X=X-Z
 Y=Y-Z
 CALL SUB2(IND, Z, ZZ, TZ, NZ, 1)
 G0 TO 99

C-----SINCE HE CANNOT PASS, HE WAITS FOR ANOTHER TRIAL------

C
4 TWT=TWT+X
 CALL SUB2(IND, X, XX, TX, NX, 1)
 CALL SUB2(IND, Y, YY, TY, NY, 2)
 CALL SUB2(IND, Z, ZZ, TZ, NZ, 1)
 G0 TO 99

C-----WHILE HE IS WAITING FOR ANOTHER TRIAL, ANOTHER LEFT-
C TURNING CAR JOIN THE QUEUE-------

C
7 TWT=TWT+Z
 X=X-Z
 NQUE=NQUE+1
 Y=Y-Z
 CALL SUB2(IND, Z, ZZ, TZ, NZ, 1)
 G0 TO 99

C-----WHEN HE BEGINS NEXT TRIAL, HE SEES ANOTHER LEFT-
C TURNING CAR JOIN THE QUEUE-------

C
8 TWT=TWT+X
 NQUE=NQUE+1
 CALL SUB2(IND, X, XX, TX, NX, 1)
 CALL SUB2(IND, Y, YY, TY, NY, 2)
 CALL SUB2(IND, Z, ZZ, TZ, NZ, 1)
 G0 TO 99

C
9 NQUE=NQUE+1
 G0 TO 102

C-----CHECK IF THE NUMBER OF TRIALS IS EQUAL TO N---------

C
97 IF(NTRIAL-N) 98, 77, 77
Midim Model

C----Now we get the exact values of xx, yy, and zz in this simulation -----

77 Continul
 xx=flcat(nx)/tx
 yy=flcat(ny)/ty
 zz=flcat(nz)/tz

C Write(2.49)xx,yy,zz
 49 Format(1x,13htheoretically/
 11x,3hx=,f6.3,3x,3hy=,f6.3,3x,3hz=,f6.3/)

C----For the theoretical results, we use previously obtained
C values for y,w,pblk,v, and eq (see the paper (1977) by
C yonemori ----

C y = 1.0/yy
 w=(exp(xx*y)-1.0)/xx
 pblk=1.0-exp(-xx*y)
 row=zz*w
 if(row.lt.1.0) go to 1010
 write(2.20)
 20 Format(2x,17hOver flow is seen/)

C 1010 continue
 v=(exp(2.0*xx*y)-2.0*xx*y*exp(xx*y)-1.0)/xx**2
 eq=row**2*(1.0+v/w**2)/(2.0*(1.0-row))

C Write(2.1091)y,w,row,eq,pblk
 1091 Format(2x,2hy=,e15.7,5x,2hw=,e15.7,5x,4hrw=,e15.7/
 12x,3heq=,e15.7,5x,5hpblk=,e15.7/)

C----These are the mathematical equations for variance of
C number of left-turning cars left behind by a test car ----

C heikin= row + eq
 h1=zz*(exp(xx*y)-1.0)/xx
 h2=2.0*zz/xx)**2*exp(xx*y)*(exp(xx*y)-xx*y-1.0)
 h3=2.0*xx*y*(xx*y)**2-2.0*exp(xx*y)
 h4=2.0*exp(2.0*xx*y)-4.0*xx*y*exp(xx*y)
 h5=3.0*zz/xx)**3*exp(xx*y)**h
 g1=h2/(1.0-h)+h2**2/(2.0*(1.0-h)**2)+h3/(3.0*(1.0-h))
 vary=g1+heikin-heikin**2

C Write(2.1095)heikin,vary
 1095 Format(2x,7hheikin=,e15.7,5x,5hvary=,e15.7/)

C----We get the simulation results for the mean and variance of
C the number of left-turning cars left behind by a test car ---

APPENDIX B
(PAGE 4)

MIDIM MODEL

T=QUE/FLOAT(NTRIAL)
TV=QUE2/FLOAT(NTRIAL)-T**2
AWT=TWT/FLOAT(NTRIAL)
WRITE(2,50)T,TV,AWT
50 FORMAT(1X,13HBY SIMULATION/
11X*,7HEIKIN=.*E15.7,5X,*5HVARY=.*E15.7,5X,*3HAWT=.*E15.7/)

C----IN THIS SECTION. WE GET THE PROBABILITIES PO,P1,P2.....
C FROM THIS SIMULATION -----

PO=FLOAT(LEFTO)/FLOAT(NTRIAL)
WRITE(2,5)LEFTO,PO
5 F0RMAT(1X,4H 0.I4,F9.3)
DO 999 1=1,20
P=FLOAT(LEFT(I))/FLOAT(NTRIAL)
WRITE(2,55)I,LEFT(I),P
55 FORMAT(1X,2I4,F9.3)
999 CONTINUE

C
1094 WRITE(2,19)
19 F0RMAT(3X,5HVAR1/)
1110 STOP

C

SUBROUTINE SUB(IND,RAND)
C THIS SUBROUTINE GENERATES A RANDOM NUMBER------
C THIS PROGRAM IS QUOTED FROM PAGE 197 "FORTRAN
C PROGRAMMING" (1972) BY K. MATSUMOTO.
C
IF(IND-D100.100.200
100 XX=5024934.
AK = 23.
AM=1.0E7+1.

C
200 W = XX * AK
RN= AMOD(W,AM)
XX=RN
RANDE=RN/1.0E7
C
RETURN
END

C

SUBROUTINE SUBK(N,QUE,LEFTO,LEFT,NTRIAL,QUE,QUE2)
C----THIS SUBROUTINE MAINLY ACCUMULATES THE VALUES FOR PAIO.
C PAI1,PAI2..... FOR THIS SIMULATION-----
C
DIMENSION LEFT(100)

-272-
C GO TO (1.2).N
C
C FOR NO CAR LEFT BEHIND ----
C 1 LEFTO=LEFTO + 1
 NTRIAL = NTRIAL + 1
 NQUE=0
 GO TO 7
C
C FOR MORE THAN ONE CAR LEFT BEHIND ----
C 2 LEFT(NQUE) = LEFT(NQUE) + 1
 QUE=QUE+FLOAT(NQUE)
 QUE2=QUE2+ FLOAT(NQUE**2)
 NTRIAL = NTRIAL + 1
 NQUE=NQUE-1
C
7 RETURN
END
C
C SUBROUTINE SUB2(IND,W,WW,TW,NW,N)
C THIS SUBROUTINE DETERMINES X,Y,AND Z----
C GO TO (1.2).N
C
C FOR POISSON ARRIVAL AND POISSON SERVICE TIME ----
C 1 IND=IND+1
 CALL SUB(IND, RAND)
 W = (-1.0/WW)*ALOG(RAND)
 GO TO 3
C
C FOR CONSTANT ARRIVAL AND CONSTANT SERVICE TIME ----
C 2 W=1.0/WW
C
C FOR CHECKING EXACT VALUES OF XX,YY,AND ZZ ----
C 3 TW=TW+W
 NW=NW+1
C
RETURN
END
SOURCE PROGRAM

MIMIM MODEL

------------------ THIS IS THE MIMIM MODEL ------------------

THIS SIMULATION OBTAINS THE MEAN AND VARIANCE OF NUMBER
OF LEFT-TURNING CARS LEFT BEHIND BY A LEFT-TURNING TEST
CAR IN THE MIMIM MODEL (POISSON (MARKOV) ARRIVALS OF
SUCCESSIVE CARS. POISSON (MARKOV) CROSSING TIME OF A
LEFT-TURNING CAR. POISSON (MARKOV) ARRIVALS OF LEFT-
TURNING CARS).

XX DETERMINES X, TIME OF NEXT ARRIVAL OF SUCCESSIVE CARS
YY DETERMINES Y, CROSSING TIME OF LEFT-TURNING CARS
ZZ DETERMINES Z, TIME OF NEXT ARRIVAL OF LEFT-TURNING CAR

XX, YY, AND ZZ COULD HAVE SOME VALUES BETWEEN 5 CARS/MIN
(0.1 CAR/SEC) AND 55 CARS/MIN (0.9 CAR/SEC)

DIMENSION LEFT(100)

---SET INITIAL CONDITIONS---
FOR DETAIL DISCUSSION OF VARIABLES, SEE APPENDIX A

DATA LEFT, NTRIAL, NQUE, LEFTO, NX, NY, NZ, IND/100*0.7*0/
DATA QUE, QUE2, TX, TY, TZ, TWT/6*0.0/

---GIVE ARBITRARY VALUES FOR XX, YY, ZZ, AND N ---

READ(1,73)XX, YY, ZZ, N
73 FORMAT(3F3.1,13)
WRITE(2,74)XX, YY, ZZ, N
74 FORMAT(2X,3HXX=.F3.1,2X.3HHYY=.F3.1,2X.3HZZ=.F3.1/
11X,17HNUMBER OF TRIALS=.I5/)

---GENERATE X, Y, AND Z ----

98 CALL SUB2(IND, X, XX, TX, NX, 1)
CALL SUB2(IND, Y, YY, TY, NY, 1)
CALL SUB2(IND, Z, ZZ, TZ, NZ, 1)

---CHECK WHAT HAPPENS TO THE LEFT-TURNING CAR----

99 CONTINUE
IF(Z.GE.X.AND.X.GT.Y) GO TO 1
IF(X.GT.Z.AND.Z.GT.Y) GO TO 1
IF(X.GT.Y.AND.Y.GT.Z) GO TO 6
IF(Z.GT.Y.AND.Y.GE.X) GO TO 4
IF(Y.GE.Z.AND.Z.GT.X) GO TO 4
IF(Y.GE.X.AND.X.GT.Z) GO TO 7
IF(Y.GE.X.AND.X.EQ.Z) GO TO 8
IF(X.GT.Y.AND.Y.EQ.Z) GO TO 9
WRITE(2,111)
111 FORMAT(5X,5FERROR/)
GO TO 1110
Waiting Time Distribution and Entropy (Average Uncertainty) on Left-Turning against Traffic [Part II] (Tokuichi Yonemori)

APPENDIX C
(PAGE 2)

MIMIM MODEL

C C---- THE LEFT-TURNING TEST CAR FINALLY PASSES STREET -----
C
1 IF(NQUE) 101.101.102
 101 CALL SUB1(1,NQUE,LEFTO,LEFT,NTRIAL,QUE,QUE2)
 TWT=iwT+Y
 GO TO 97
 102 CALL SUB1(2,NQUE,LEFTO,LEFT,NTRIAL,QUE,QUE2)
 TWT=TWT+Y
 GO TO 97
C C---- WHILE HE IS PASSING STREET, ANOTHER LEFT-TURNING C
C CAR JOIN THE QUEUE ------
C
6 TWT=TWT+Z
 NQUE=NQUE+1
 X=X-Z
 Y=Y-Z
 CALL SUB2(IND,Z,ZZ,TZ,NZ,1)
 GO TO 99
C C---- SINCE HE CANNOT PASS, HE WAITS FOR ANOTHER TRIAL ------
C
4 TWT=TWT+X
 CALL SUB2(IND,X,XX,TX,NX,1)
 CALL SUB2(IND,Y,YY,TY,NY,1)
 CALL SUB2(IND,Z,ZZ,TZ,NZ,1)
 GO TO 99
C C---- WHILE HE IS WAITING FOR ANOTHER TRIAL, ANOTHER LEFT-
C TURNING CAR JOIN THE QUEUE ------
C
7 TWT=TWT+Z
 X=X-Z
 NQUE=NQUE+1
 Y=Y-Z
 CALL SUB2(IND,Z,ZZ,TZ,NZ,1)
 GO TO 99
C C---- WHEN HE BEGINS NEXT TRIAL, HE SEES ANOTHER LEFT-
C TURNING CAR JOIN THE QUEUE ------
C
8 TWT=TWT+X
 NQUE=NQUE+1
 CALL SUB2(IND,X,XX,TX,NX,1)
 CALL SUB2(IND,Y,YY,TY,NY,1)
 CALL SUB2(IND,Z,ZZ,TZ,NZ,1)
 GO TO 99
C
9 NQUE=NQUE+1
 GO TO 102
C C---- CHECK IF THE NUMBER OF TRIALS IS EQUAL TO N -------
C
-275-
97 IF(NTRIAL-N) 98,77,77
C
C----NOW WE GET THE EXACT VALUES OF XX, YY, AND ZZ
C IN THIS SIMULATION ------
C
77 CONTINUE
XX=FLOAT(NX)/TX
YY=FLOAT(NY)/TY
ZZ=FLOAT(NZ)/TZ
C
WRITE(2,49)XX,YY,ZZ
49 FORMAT(IX,13HTHEORETICALLY/
11X,3HXX=.,F6.3.3X.3HYY=.,F6.3X.3HZZ=.,F6.3/
C
C----FOR THE THEORETICAL RESULTS, WE USE PREVIOUSLY OBTAINED
C VALUES FOR W, PBLK, V, AND EQ (SEE THE PAPER (1977) BY
C YONEMORI -----
C
PBLK=XX/(XX+YY)
W=1.0/YY
ROW=ZZ*W
IF(ROW.LT.1.0) GO TO 1010
WRITE(2,20)
20 FORMAT(3X,17H0VER FLOW IS SEEN/)
C
1010 CONTINUE
EQ=ROW**2/(1.0-ROW)
HEIKIN=ROW+EQ
VARY=ROW/(1.0-ROW)**2
C
WRITE(2,1091)W,ROW,EQ,PBLK,HEIKIN,VARY
1091 FORMAT(2X,1H W=.E15.7.5X.4HR0W=.E15.7.5X.3HEQ=.E15.7.5X/
12X,5HPBLK=.E15.7.5X.7HEIKIN=.E15.7.6X.5HVARY=.E15.7/)
C
C----WE GET THE SIMULATION RESULTS FOR THE MEAN AND VARIANCE OF
C THE NUMBER OF LEFT-TURNING CARS LEFT BEHIND BY A TEST CAR ---
C
T=QUE/FLOAT(NTRIAL)
TV=QUE2/FLOAT(NTRIAL)-T**2
AWT=TWT/FLOAT(NTRIAL)
WRITE(2,50)T,TV,AWT
50 FORMAT(IX,13HZBY SIMULATION/
11X,7HEIKIN=.E15.7.5X.5HVARY=.E15.7.5X.3HAWT,.E15.7/)
C
C----IN THIS SECTION, WE COMPARE THE PROBABILITIES PAI0, PAI1,
C PAI2, ---- OBTAINED FROM MATHEMATICAL ANALYSIS WITH
C P0, P1, P2, ---- OBTAINED FROM THIS SIMULATION ------
C
P0=FLOAT(LEFT0)/FLOAT(NTRIAL)
PAI0=1.0-ROW

-276-
APPENDIX C

(MIMIM MODEL)

WRITE(2,5)LEFTO,P0,PAI0
5 FORMAT(1X,4H 0,14,2F9.3)
DO 999 I=1,20
P=FLOAT(LEFT(I))/FLOAT(NTRIAL)
PAI =PAI0*ROW**I
WRITE(2,55)I,LEFT(I),P,PAI
55 FORMAT(1X,2I4,2F9.3)
999 CONTINUE
C
1094 WRITE(2,19)
19 FORMAT(2X,5H0WARI/)
1110 STOP
END
C
C
SUBROUTINE SUB(IND,RAND)
C
C THIS SUBROUTINE GENERATES A RANDOM NUMBER------
C (THIS PROGRAM IS QUOTED FROM PAGE 197 "FORTRAN
C PROGRAMMING" (1972) BY KINJI MATSUMOTO)
C
100 XX=5024934.
 AK = 23.
 AM=1.0E7+1.
200 W = XX * AK
 RN= AMOD(W,AM)
 XX=RN
 RAND=RN/1.0E7
RETURN
END
C
C
SUBROUTINE SUB1(N,NQUE,LEFTO,LEFT,NTRIAL,QUE,QUE2)
C
C THIS SUBROUTINE MAINLY ACCUMULATES THE VALUES FOR PAI0,
C PAI1,PAI2------ FOR THIS SIMULATION------
C
DIMENSION LEFT(100)
G0 TO (1.2),N
C
C FOR NO CAR LEFT BEHIND ----
C
1 LEFTO=LEFTO + 1
NTRIAL = NTRIAL + 1
NQUE=0
G0 TO 7
MIMIM Model

--- FOR MORE THAN ONE CAR LEFT BEHIND ---

\[
\begin{align*}
2 \text{ LEFT}(\text{NQUE}) &= \text{LEFT}(\text{NQUE}) + 1 \\
\text{QUE} &= \text{QUEUE} + \text{FLOAT}(\text{NQUE}) \\
\text{QUE}^2 &= \text{QUEUE}^2 + \text{FLOAT}(\text{NQUE}^2) \\
\text{NTRIAL} &= \text{NTRIAL} + 1 \\
\text{NQUE} &= \text{NQUE} - 1
\end{align*}
\]

7 RETURN
END

SUBROUTINE SUB2(IND, WW, TW, NW, N)

--- THIS SUBROUTINE DETERMINES X, Y, AND Z ---

GO TO (1, 2) * N

--- FOR POISSON ARRIVAL AND POISSON SERVICE TIME ---

1 IND = IND + 1
CALL SUB2(IND, RAND)
W = (-1.0 / WW) * ALOG(RAND)
GO TO 3

--- FOR CONSTANT ARRIVAL AND CONSTANT SERVICE TIME ---

2 W = 1.0 / WW

--- FOR CHECKING EXACT VALUES OF XX, YY, AND ZZ ---

3 TW = TW + W
NW = NW + 1
RETURN
END