<table>
<thead>
<tr>
<th>Title</th>
<th>The number of endpoints in a random recursive tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Maehara, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>琉球大学教育学部紀要 第二部 1984-01 109-112</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/20.500.12000/9631</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
The number of endpoints in a random recursive tree

Hiroshi MAEHARA*

(Received August 20, 1983)

Abstract

It is proved that the distribution of the number of endpoints in a random recursive tree of order \(n \) is asymptotically normal \((n \to \infty)\) with asymptotic mean \(n/2 \) and asymptotic variance \(n/12 \).

1. Introduction

A tree is a connected graph that has no cycle. The order of a tree is the number of points in the tree. In a labeled tree of order \(n \), the integers 1 through \(n \) are assigned to its points. A labeled tree of order \(n \) is called a recursive tree (see Moon [3]) if \(n=1 \), or \(n \geq 2 \) and it is obtained by joining the \(n \)th point to one point of some recursive tree of order \(n-1 \). Thus, in a recursive tree the labeling is considered to show the process of growth. And it is easily seen that there are exactly \((n-1)!\) recursive trees of order \(n \).

A point of a tree is an endpoint if its degree is one. Let \(V_n \) be the number of endpoints in a random labeled tree of order \(n \), that is, in a tree chosen at random from the set of all labeled trees of order \(n \). Then it was proved by Rényi [4] that the distribution of \(V_n \) is asymptotically normal as \(n \to \infty \) with asymptotic mean \(n/e \) and asymptotic variance \((2-e)n/e^2\).

In this note we consider the corresponding problem for a random recursive tree. Let \(X(n) \) be the number of endpoints in a recursive tree of order \(n \) which is chosen at random from the set of all recursive trees of order \(n \). For a technical reason, however, we exclude the first point (= the point of label 1) in the count of endpoints, even if its degree is one. Thus \(X(1) = 0 \), \(X(2) = 1 \) (!), and \(X(3) \), \(X(4) \), \(\ldots \ldots \) are random variables. We shall show that the distribution of \(X(n) \) is asymptotically normal as \(n \) tends to infinity with asymptotic mean \(n/2 \) and asymptotic variance \(n/12 \).

2. The conditional probability

Let \(T(1), T(2), T(3), \ldots \) be the sequence of random recursive trees defined inductively in the following way:

(i) \(T(1) \) is the single point 1,

and

(ii) for \(n \geq 2 \), \(T(n) \) is a random recursive tree of order \(n \) obtained by joining the \(n \)th point to one point randomly selected from the \(n-1 \) points of \(T(n-1) \).

* College of Education, Ryukyu University.
Then it is easily proved by mathematical induction on \(n \) that each recursive tree of order \(n \) is achieved by \(T(n) \) with equal probability. Hence we regard \(X(n) \) as the number of endpoints of \(T(n) \), for each \(n \). (Of course the first point is excluded from the set of endpoints.) By doing so, \(X(n) \) and \(X(n+1) \) are related as follows. If \(T(n) \) has \(x \) endpoints then \(T(n+1) \) is to have \(x \) or \(x+1 \) endpoints accordingly as the point joined with the \((n+1)\)th point is or is not an endpoint of \(T(n) \). Thus the conditional probability of \(X(n+1) = y \) on the hypothesis \(X(n) = x \) is given by

\[
P(X(n+1) = y \mid X(n) = x) = \begin{cases} \frac{x}{n} & \text{if } y = x \\ \frac{1-x}{n} & \text{if } y = x+1 \\ 0 & \text{otherwise.} \end{cases}
\]

Indeed, \(\{X(n) ; n=1, 2, 3, \cdots \} \) is a nonstationary Markov process (see e.g. [1, p.369]) with one step transition probability (2.1) at 'time' \(n \).

3. The mean and variance

Let us denote by \(\mu(n) \) and \(\sigma(n)^2 \) the mean and variance of the random variable \(X(n) \). We shall show that

\[
\mu(n) = \frac{n}{2} \quad \text{for } n \geq 2,
\]

and

\[
\sigma(n)^2 = \frac{n}{12} \quad \text{for } n \geq 3.
\]

For random variables \(X \) and \(Y \), we denote by \(\mathbb{E} \{ X \mid Y = y \} \) the conditional expectation of \(X \) given \(Y = y \), and by \(\mathbb{E} \{ X \mid Y \} \) that function of the random variable \(Y \) whose value at \(Y = y \) is \(\mathbb{E} \{ X \mid Y = y \} \).

Now, from the conditional probability (2.1), we have

\[
\mathbb{E} \{ X(n+1) \mid X(n) = x \} = x \left(\frac{x}{n} \right) + (x+1) \left(1 - \frac{x}{n} \right) = (1 - \frac{1}{n})x + 1.
\]

Hence

\[
\mathbb{E} \{ X(n+1) \} = \mathbb{E} \{ \mathbb{E} \{ X(n+1) \mid X(n) \} \} = (1 - \frac{1}{n}) \mathbb{E} \{ X(n) \} + 1.
\]

Since \(\mu(2) = \mathbb{E} \{ X(2) \} = 1 \), (3.1) follows easily from this recursion formula.

For an integer \(h \geq 0 \), let \(\mu_h(n) \) denote the \(h \)th central moment of \(X(n) \). If we put \(Y(n) = X(n) - \mu(n) \) then

\[
\mu_h(n+1) = \mathbb{E} \{ Y(n+1)^h \} = \mathbb{E} \{ \mathbb{E} \{ Y(n+1)^h \mid X(n) \} \}
\]

\[
= \mathbb{E} \{ (X(n) - \mu(n+1))^h \} X(n)/n + (X(n)+1-\mu(n+1))^h \{ 1-X(n)/n \}
\]

\[
= \mathbb{E} \{ (Y(n) - 1/2)^h \} \{ Y(n)/n+1/2 \} - \{ Y(n)+1/2 \}^h \{ Y(n)/n-1/2 \}.
\]

After some calculations we get the following recursion formula:

\[
\mu_h(n+1) = \sum_{i \text{ even}} 2^{-i} \left(\binom{h}{i} - \frac{1}{n} \binom{h}{i+1} \right) \mu_{h-i}(n),
\]

\[\text{-110-}\]
MAEHARA: The number of endpoints in a random recursive tree

where the sum is over all even numbers \(i \), \(0 \leq i \leq h \).

Letting \(h = 2 \) yields

\[
\mu_2(n+1) = (1 - 2/n) \mu_2(n) + 1/4,
\]

from which we find that

\[
\sigma(n)^2 = \mu_2(n) = n/12 \quad \text{for } n \geq 3.
\]

4. The higher moments

We will show that for each fixed integer \(j \geq 0 \)

\[
(4.1) \quad \mu_{2j}(n) = \frac{(2j)!}{2^j j!} \left(\frac{n}{12} \right)^j + O(n^{j-1}) \quad (n \to \infty)
\]

and

\[
(4.2) \quad \mu_{2j+1}(n) = 0 \quad \text{for all } n \geq 2.
\]

First we show \((4.2)\) by induction on \(j \). Obviously \(\mu_1(n) = 0 \). Suppose \(\mu_{2j+1}(n) = 0 \) for \(j < k \), \(k \geq 1 \). Then from \((3.3)\) we have

\[
\mu_{2k+1}(n+1) = (1 - (2k+1)/n) \mu_{2k+1}(n).
\]

Since \(\mu_{2k+1}(2) = 0 \), it follows that \(\mu_{2k+1}(n) = 0 \) for \(n \geq 2 \).

To prove \((4.1)\) we prepare a lemma.

Lemma. Let \(\ell \), \(m \geq 0 \) be fixed integers and \(g(n) \) be a function on \(n \) such that \(g(n) = cn^t + O(n^{t-1}) \), where \(c \) is a constant. If \(f(n) \) satisfies the recurrence relation

\[
f(n+1) = (1 - m/n) f(n) + g(n)
\]

then

\[
f(n) = \frac{c}{\ell + m + 1} n^{t+1} + O(n^t).
\]

Proof. From the recurrence relation, we successively see that

\[
f(m+1) = g(m),
\]

\[
f(m+2) = \frac{1}{m+1} g(m) + g(m+1),
\]

\[
f(m+3) = \frac{2 \cdot 1}{(m+2)(m+1)} g(m) + \frac{2}{m+2} g(m+1) + g(m+2),
\]

\[\ldots\ldots\]

Thus we find that

\[
f(n+1) = \sum_{i=0}^{n-m} \frac{(m+i)! (n-m)!}{n! i!} g(m+i) = \frac{1}{(n)_m} \sum_{i=0}^{n} (i)_m g(i)
\]

where \((x)_m\) denotes the falling \(m \)-factorial of \(x \), that is,

\[(x)_m = x(x-1) \cdots (x-m+1).\]
Then the lemma follows from
\[(x)_m = x^m + O(x^{m-1})\]
and
\[\sum_{i=m}^{n} i^{t+m} = \frac{1}{t+m+1} n^{t+m+1} + O(n^{t+m}).\]

Now we show (4.1) by induction on \(j\). Since \(\mu_k(n) = 1\), (4.1) holds for \(j = 0\). Suppose (4.1) holds for \(j < k\), \(k \geq 1\). Then by (3.3) we have
\[\mu_{2k}(n+1) = (1 - 2k/n)\mu_{2k}(n) + \frac{1}{4} \binom{2k}{2} - \frac{1}{4n} \binom{2k}{3} \mu_{2k-2}(n) + \cdots \]
\[= (1 - 2k/n)\mu_{2k}(n) + \frac{1}{4} \binom{2k}{2} \frac{(2k-2)!}{2^{k-1}(k-1)!} \left(\frac{n}{12}\right)^{k-1} + O(n^{k-2}).\]
Applying the lemma we have
\[\mu_{2k}(n) = \frac{1}{k-1 + 2k + 1} \cdot \frac{1}{4} \binom{2k}{2} \frac{(2k-1)!}{2^{k-1}(k-1)!} \left(\frac{n}{12}\right)^{k-1} n + O(n^{k-1})\]
\[= \frac{(2k)!}{2^k k!} \left(\frac{n}{12}\right)^k + O(n^{k-1}).\]
Thus (4.1) also holds for \(j = k\).

5. The asymptotic distribution

We now prove the distribution of \((X(n) - n/2)/\sigma(n)\) tends to the normal distribution with zero mean and unit variance. To do this it is sufficient [2, p.115] to show that for each fixed integer \(j\),
\[\frac{\mu_{2j}(n)}{\sigma(n)^{2j}} \to \frac{(2j)!}{2^j j!} \quad \text{and} \quad \frac{\mu_{2j+1}(n)}{\sigma(n)^{2j+1}} \to 0\]
as \(n\) tends to infinity. But this follows at once from (3.2) and (4.1), (4.2).

Thus the distribution of \(X(n)\) is asymptotically normal \((n \to \infty)\) with asymptotic mean \(n/2\) and asymptotic variance \(n/12\).

References