<table>
<thead>
<tr>
<th>Title</th>
<th>A Note on Moon's Problem -- Crossings in Random Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Maehara, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>琉球大学教育学部紀要 第二部 29: 1-6</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1986-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/20.500.12000/9633</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
A Note on Moon’s Problem -- Crossings in Random Graphs

Hiroshi Maehara

1. Introduction

Let \(G \) be an (abstract) simple graph. Place the vertices of \(G \) randomly on the surface of a unit sphere \(S \) so that all vertices of \(G \) are distributed independently and uniformly on \(S \). Connect two vertices \(a, b \) by the shortest arc on \(S \) whenever \(\{a, b\} \) is an edge of \(G \). The resulting configuration is called a random drawing of \(G \) on \(S \). A random drawing of \(G \) on a hemisphere \(H \) of \(S \) is defined similarly. The crossing number of a random drawing of \(G \) is the number of pairs of arcs that intersect each other in a point interior to both. (All 'singular' cases of special position may be ignored as they occur with probability zero.)

Moon studied the crossing number \(c(K_n : S) \) in a random drawing of the complete \(n \)-graph \(K_n \) on \(S \). In [2] he stated that the distribution of \(c(K_n : S) \) is asymptotically normal as \(n \) tends to infinity. However the argument to show the asymptotic normality of \(c(K_n : S) \) was incorrect [3].

We show here that the "skewness" of the distribution of \(c(K_n : S) \) tends to a positive constant as \(n \) tends to infinity. Hence the distribution of \(c(K_n : S) \) is never asymptotically normal. On the other hand, it is proved that the distribution of the crossing number \(c(K_n : H) \) in a random drawing of \(K_n \) on a hemisphere \(H \) is asymptotically normal. It is also shown that among all graphs \(G \) with \(n \) vertices and \(m \) edges, the expected value of the crossing number in a random drawing of \(G \) on \(S \) (or \(H \)) takes the largest value when the degrees of the vertices of \(G \) are as equal as possible.

2. Geometric probability on the sphere

We recall here some results on geometric probability on a unit sphere \(S \) for later use (see [4]). For non-antipodal points \(a, b \) of \(S \), \(ab \) denotes the shortest arc (and its length) joining them. A subset \(K \) of \(S \) is convex if \(K \) is hemispherical and \(ab \subset K \) for every non-antipodal \(a, b \) of \(K \).

(2.1) The probability density function of the length \(s = ab \) for two random points \(a, b \) on the unit sphere \(S \) is \((1/2) \sin s \).

(2.2) The probability that a "random great circle" intersect a convex set \(K \) of perimeter \(L \) is \(L / (2\pi) \).

(2.3) The mean distance between two points on the unit hemisphere \(H \) is \(4/\pi \).

(2.4) The probability that four random points on the unit hemisphere \(H \) form a convex spherical quadrilateral is \(3-24/\pi^2 \).

*Dept. of Math., Coll. of Educ., Univ. of the Ryukyus

- 1 -
3. A complete graph on a unit sphere

Consider a random drawing of K_n on S and let V be the vertex set of the drawing. Let $x(abcd)$ be the number of crossings in the six arcs ab, ac, ad, bc, bd, cd. Then $x(abcd)$ is a random $(0, 1)$-variable, and the crossing number $c(K_n : S)$ is written as

$$c(K_n : S) = \sum x(abcd),$$

where the summation is taken over all 4-subsets $\{a, b, c, d\}$ of V. The conditional probability that cd crosses ab given $ab = s$ follows easily from (2.2):

$$\text{Prob}[cd \text{ crosses } ab \mid ab = s] = s/(4\pi).$$

Then by (2.1) we have the expected values of $x(abcd)$ and $c(K_n : S)$:

$$\mathbb{E}[x(abcd)] = 3/8, \quad \mathbb{E}[c(K_n : S)] = (n/4)(3/8).$$

Three points a, b, c, determine three great circles of the sphere S, and they divide the surface into eight spherical triangles almost surely: the triangle T_{abc} enclosed by ab, bc, ca; the triangles T_{ab}, T_{bc}, T_{ca}, each having one side in common with T_{abc}; the triangles T_a, T_b, T_c, each having one point in common with T_{abc}; and the triangle T having no point in common with T_{abc}. It is easily seen that the arcs ab and cd intersect each other if and only if the point d is in the triangle T_{ab}. Since the probability that cd crosses ab under the condition $ab = s$ is $s/(4\pi)$, we have

$$\mathbb{E}[(area(T_{ab}) \mid ab = s)]/(4\pi) = s/(4\pi),$$

where $\mathbb{E}[\ast \ast]$ denotes the conditional expectation under the condition $\ast \ast$. Since $x(abcd)$ takes the value 1 if and only if d falls in one of T_{ab}, T_{bc}, T_{ca}, and since $\text{area}(T_{ab}) = \text{area}(T_c), \ldots, \text{area}(T_{abc}) = \text{area}(T)$, we have

$$\begin{align*}
\mathbb{E}[x(abcd) \mid ab = s] &= \text{Prob}[x(abcd) = 1 \mid ab = s] \\
&= \mathbb{E}[\text{area}(T_{ab}) + \text{area}(T_{bc}) + \text{area}(T_{ca}) \mid ab = s]/(4\pi) \\
&= 1/2 - \mathbb{E}[\text{area}(T_{abc}) \mid ab = s]/(4\pi) = 1/2 - s/(4\pi).
\end{align*}$$

(3.1)

Hence, for different a, b, c, d, e, f, we have

$$\begin{align*}
\mathbb{E}[x(abcd) \ x(abef)] &= \mathbb{E}[(1/2 - s/(4\pi))^2] \\
&= (5\pi^2 - 4)/(32\pi^4).
\end{align*}$$

Let $y(abcd) = x(abcd) - 3/8$. Then

$$\mathbb{E}[y(abcd) \ y(cdef)] = (\pi^2 - 8)/(64\pi^4).$$
(Note that \(y(abcdef) \) and \(y(defg) \) are mutually independent as well as \(y(abcd) \) and \(y(efgh) \) are.) Hence the variance of \(c(K_n) \) is

\[
\sigma(n)^2 = E\left[(\Sigma y(abcdef))^2\right] = \left(\frac{n}{4} \right)^2 \left(\frac{n-4}{2} \right)^2 \left(\frac{4}{n^2 - 8} \right) / (64 \pi^2) + O(n^2)
\]

\[
= \left[(n^2 - 8) / (2^n \pi^2) \right] n^6 + O(n^5).
\]

4. The skewness

We want to estimate the third central moment \(\mu_3(n) \) of \(c(K_n : S) \) when \(n \) is large. First we consider the expected value of the product \(z = x(abcd) x(defg) x(ghia) \). From (3.1) it follows that

\[
E[z \mid ad=s, dg=t, ga=u] = \left[1 / (4 \pi) \right]^3 (2\pi - s) (2\pi - t) (2\pi - u)
\]

and hence

\[
E[z] = 7/2^7 - [1/(4\pi)]^3 E[(ad) (dg) (ga)].
\]

Let \(f(s, t, u) \) be the joint probability density function of \(s = ad, t = dg, u = ga \), and let \(f_n(s, t, u) \) be the joint probability density function of \(s, t, u \) when the random three points \(a, d, g \) are chosen independently and uniformly on a fixed hemisphere \(H \) of \(S \). Then

\[
f_n(s, t, u) \text{ Prob } (a, d, g \in H) = f(s, t, u) \text{ Prob } (\Delta adg \cap G = \phi) / 2,
\]

where \(G \) is the great circle bounding \(H \), and \(\text{Prob } (\Delta adg \cap G = \phi) \) is the probability that \(G \) does not cut the triangle \(\Delta adg \) provided that the perimeter of \(\Delta adg \) is \(s + t + u \). Then from (2.2)

\[
\text{Prob } (\Delta adg \cap G = \phi) = 1 - (s + t + u) / (2\pi).
\]

Hence we have

\[
f_n(s, t, u) = 4f(s, t, u) - [2(s + t + u) / \pi] f(s, t, u).
\]

Multiplying both sides by \((s) (t) = (ad) (dg) \) and integrate (in full range of \(s, t, u \) such that \(s, t, u \) form a spherical triangle), we get

\[
E[(ad) (dg) \mid a, d, g \in H] = 4E[(ad) (dg)] - (4 / \pi) E[(ad)^2 (dg)] - (2 / \pi) E[(ad) (dg) (ga)].
\]

- 3 -
Since \(E[(ad)(dg)] = E[ad]^2 = (\pi/2)^2 \) and \(E[(ad)^2 dg] = E[(ad)^2] E[dg] = (\pi^3 - 4\pi)/4 \), we have

\[
E[(ad)(dg)(ga)] = 2\pi - (\pi/2) E[(ad)(dg) \mid a, d, d \in H].
\]

On the other hand

\[
E[(ad)(dg) \mid a, d, g \in H] = E[w(d)^2 \mid d \in H],
\]

where \(w(d) = E[(ad) \mid a \in H \text{ with } d \text{ fixed}] \). Since \(w(d) \) is continuous in \(d \in H \) and not constant (because: by (2.3), \(E[w(d) \mid d \in H] = 4/\pi \), however, if \(d \) is the "center" of \(H \) then \(w(d) = 1 \) by (2.1)), we must have

\[
E[w(d)^2 \mid d \in H] > E[w(d) \mid d \in H]^2 = (4/\pi)^2.
\]

Thus we have

\[
E[(ad)(dg)(ga)] < 2\pi - (\pi/2)(4/\pi)^2 = 2\pi - 8/\pi = 3.7367\ldots
\]

\[
< (\pi/2)^3 = 3.8757\ldots
\]

and \(E[z] - (3/8)^3 > 7/2 - [1/(4\pi)]^3 (\pi/2)^3 - (3/8)^3 = 0 \). Hence

\[
p : = E[y(abcd) y(defg) y(ghia)] = E[z] - (3/8)^3 > 0.
\]

Now it is not difficult to see that the third central moment \(\mu_3(n) \) is

\[
\mu_3(n) = E[\{ \Sigma y(abcd) \}^3] = \left(\frac{\pi}{9} \right) \left(\frac{9}{4} \right) \left(\frac{5}{3} \right) (36) p + O(n^8)
\]

\[
= (p/8) n^9 + O(n^8).
\]

Thus the skewness of \(c(K_n:S) \) is

\[
\mu_3(n) / \sigma(n)^3 = (p/8) \left[2^9 \pi^2 / (\pi^2 - 8) \right]^{3/2} + o(1),
\]

which tends to a positive constant as \(n \) tends to infinity.

5. A complete graph on a hemisphere

Here we prove the asymptotic normality of the crossing number \(c(K_n:H) \) on a hemisphere \(H \). This is a simple application of a limit lemma proved in \([1]\). First we state the lemma.

Let \(N \) be the set of natural numbers and \(r \) a positive integer. Suppose that for every \(r \)-
element subset A of N, there corresponds a random variable $x(A)$ defined on a common probability space and having the same mean θ. We impose the following three conditions.

(5.1) For any finite number of r-subsets $A, B, \ldots, D \subset N$, the expected value $E[x(A) \ldots x(D)]$ exists, and for any bijection $\tau : N \to N$, $E[x(\tau A) \ldots x(\tau D)] = E[x(A) \ldots x(D)]$.

(5.2) If $(A \cup \ldots \cup B) \cap (C \cup \ldots \cup D) = \phi$, then

$$E[x(A) \ldots x(D)] = E[x(A) \ldots x(B)] E[x(C) \ldots x(D)].$$

Under the condition (5.1), the covariance $cov[x(A), x(B)]$ of $x(A)$ and $x(B)$ depends only on $|A \cap B|$, the number of elements in $A \cap B$. Let $c(m) = cov[x(A), x(B)]$ if $|A \cap B| = m$. Let t be the minimum value of m such that $c(m) \neq 0$.

(5.3) If $|A \cap (B \cup \ldots \cup D)| \leq t$ and $|A \cap B| < t, \ldots, |A \cap D| < t$, then $E[x(A) \ldots x(D)] = E[x(A)] E[x(B) \ldots x(D)]$.

Note that if $t = 1$ then (5.3) automatically follows from (5.2).

LEMMA. Suppose $x(A)$ (A runs over all r-subsets of N) satisfy (5.1), (5.2), (5.3), and let $s(n)$ be the sum of $x(A)$ for all r-subsets A of $\{1, 2, \ldots, n\}$. Then $[s(n) - \mu]/\sigma$ tends to the normal distribution with zero mean and unit variance as n tends to infinity, where

$$\mu = \binom{n}{r} \theta, \quad \sigma^2 = \left[c(t) n^{2r-t} \right] / \{t![(r-t)!]^2 \}.$$

Now we proceed to the proof of asymptotic normality of the distribution of $c(K_n : H)$. Consider a countably infinite number of random points on the unit hemisphere H, distributed independently and uniformly on H. Label these points by natural numbers. For any 4-subset $A = \{a, b, c, d\}$ of the natural numbers, let $x(A) = x(abcd)$, the number of crossings in six arcs ab, ac, ad, bc, bd, cd. Then $x(abcd) = 1$ if four points a, b, c, d, form a convex spherical quadrilateral, and $= 0$ otherwise. Thus $\theta = E[x(A)] = 3 - 24/n^2$ by (2.4), and $x(A)$'s clearly satisfy the conditions (5.1), (5.2). Furthermore, $c(K_n : H) = s(n)$, the sum of $x(A)$ for all 4-subsets of $\{1, 2, \ldots, n\}$.

Let $v(a) = E[x(abcd) \mid a : \text{fixed}]$. Then as a function of a, $v(a)$ is not constant. This is seen as follows. Suppose a is fixed on the boundary of the hemisphere H, and b, c be random points on H. Then H is divided by the three great circles determined by a, b, c, into six triangles (almost surely) the triangle T_{abc} enclosed by ab, bc, ca; the triangles T_{ab}, T_{bc}, T_{ca} each having one side in common with T_{abc}; and triangles T_{ab}, T_{bc}, T_{ca} each having one point in common with T_{abc}. Further, these six triangles have the same expected area, as easily seen. Since $x(abcd) = 1$ if and only if d falls in T_{ab} or T_{bc} or T_{ca}, we have $E[x(abcd)] = v(a) = 1/2 + \theta$. Hence, when a varies in H, $v(a)$ also varies, and hence $E[x(abcd) x(aceg)] = E[v(a)^2] > \theta^2$. Thus $c(1) = cov[x(abcd), x(aceg)] > 0$, and hence we can apply the lemma. Therefore, the distribution of $c(K_n : H)$ is asymptotically normal as $n \to \infty$.

- 5 -
6. Crossings in a general graph

Let G be a simple graph with n vertices and m edges. Let V be the vertex set of G. Denote by $c(G)$ the number of crossings in a random drawing of G on a unit sphere S or on a hemisphere H. We show here that the expected value of $c(G)$ is

$$
E[c(G)] = (\theta/2) \left[m^2 + m - \sum_{a \in V} \deg(a)^2 \right].
$$

where θ is the probability that two non-adjacent arcs ab and cd cross each other, and $\deg(a)$ is the degree of the vertex a of G.

Let $\{ a, b \}$ be any edge of G. Then there are

$$m - (\deg(a) + \deg(b)) + 1$$

edges not incident to a or b. Hence

$$E[c(G)] = \sum \left[m - (\deg(a) + \deg(b)) + 1 \right] \theta/2$$

(where the summation is over all edges $\{a, b\}$ of G)

$$= (\theta/2) \left[m^2 + m - \sum (\deg(a) + \deg(b)) \right].$$

In the summation $\sum (\deg(a) + \deg(b))$, each $\deg(a)$ appears exactly $\deg(a)$ times. Hence

$$\sum (\deg(a) + \deg(b)) = \sum_{a \in V} \deg(a)^2.$$

This proves (6.1).

Let \bar{d} be the average degree of G. Then the "variance" of $\deg(a) \ (a \in V)$ is $(\sum \deg(a)^2)/n - (\bar{d})^2$. Therefore, from (6.1) it follows that among all graphs with n vertices and m edges, $E[c(G)]$ takes the largest value when G has the minimum variance of $\deg(a)$.

References