HOME    About this site    mypage    Japanese    library    university    Feedback

University of the Ryukyus Repository >
Educational research facilities >
Center of Moleclar Biosciences (COMB) >
Research Report (COMB) >

Title :硝酸還元酵素による一酸化窒素(NO)生成に関する基礎的研究
Title alternative :Nitric Oxide (NO) Production by Plant Nitrate Reductase
Authors :山崎, 秀雄
Authors alternative :Yamasaki, Hideo
Issue Date :May-2003
Abstract :平成12年度~平成14年度科学研究費補助金(基盤研究(C)(2))研究成果報告書
研究概要:脊椎動物、無脊椎動物、バクテリアではNO合成酵素(NOS)が存在し、様々な生理作用に関与していることが明らかになっている。ところが、植物の酵素的NO生成機構は未だ意見の一致を見ていない。哺乳類型NOSが発見されて以来、植物でも動物の系と同様な酵素が存在することが期待され、NOS遺伝子及びタンパクの同定が試みられてきた。しかし、ゲノムプロジェクトの概要が終了したモデル植物(アラビドプシス)ゲノムからもNOS様配列は確認できなかった。我々は、数年来、植物NOSプロジェクトとは独立に別の可能性を検討し、全く異なった機構からなるAlternative NO production pathwayを提唱してきた。無機窒素をアミノ酸等の有機窒素変換する窒素同化は、光合成と並んで植物の重要な代謝である。我々は、窒素同化系の鍵酵素である硝酸還元酵素(NR)がNO生成を触媒することを世界で初めて証明した。通常、NRはNAD(P)Hを電子供与体として硝酸を亜硝酸へと還元する。ところが、NRが通常の反応生成物である亜硝酸を基質とした時にNOを生成することを、in vitro系で実証した。また、単細胞緑藻のクラミドモナス野生株に亜硝酸を加えた時にも、顕著なin vivoでのNO生成が観察された。一方、NR欠損株ではNO生成は全く起こらなかった。これらの結果は、植物にはNOSとは異なる、NR依存性のNO生成経路が存在することを示している。
Nitric oxide (NO) is an important molecule that is involved in diverse physiological functions of living organisms. It has been shown that NO can produced endogenously by NO synthase (NOS, EC in vertebrate, invertebrates and bacteria. In contrast, the mechanism for enzymatic NO production in plants and algae is still in debate. Until recently, NOS had been presumed as the only enzyme that could produce NO in plant cells. Despite many efforts to identify a gene and protein similar to mammalian-type NOS, however, there has been no substantial evidence to conclude the presence of such NOS in plants. We have proposed an alternative NO production mechanism for plants. Nitrate reductase (NR) is a well-known protein for plant biologists because it is a key enzyme of nitrate assimilation metabolism. The enzyme normally catalyzes the reduction of nitrate to form nitrite using NAD(P)H. we have shown that the enzyme is capable of further reducing the product nitrite to produce NO as the result. Importantly, NO can be subsequently converted to peroxynitrite, the most toxic active nitrogen, under aerobic conditions. Although we cannot exclude a possibility for discovering a new type NOS that is unique to plants, it is now evident that plants do produce NO by the distinct mechanism from animals. These findings, the classical enzyme possessing unexplored important functions, offers us a new opportunity to re-consider and re-investigate plant biology with integrated knowledge in terms of "NO".
Type Local :研究報告書
Publisher :山崎秀雄
URI :http://hdl.handle.net/20.500.12000/11368
Appears in Collections:Research Report (COMB)

Files in This Item:

File Description SizeFormat
12660048.pdf表紙、はしがき、他3301KbAdobe PDFView/Open