University of the Ryukyus Repository >
Faculty of Science >
Bulletin >
Ryukyu mathematical journal >
Vol.12 (1999) >
|
Title | : | Minimal free resolution of the third Veronese subring of three variables |
Authors | : | Maeda, Takashi |
Authors alternative | : | 前田, 高士 |
Issue Date | : | 30-Dec-1999 |
Abstract | : | The third component of the graded minimal free resolution of the third Veronese subring of three variables over a field k of characteristic zero, is proved to be decomposed into {741} 【○!+】 {732} 【○!+】 {651} 【○!+】 {642} 【○!+】 {633} 【○!+】 {552} 【○!+】 {543} 【○!×】 S(-4) as GL_3(k)-module, where {n, m, l} is the irreducible representation of GL_3(k) with the highest weight (n, m, l) and S is the polynomial ring of ten variables. They are expressed applying the symbolic method of ternary cubic forms in the classical invariant theory. |
Type Local | : | 紀要論文 |
ISSN | : | 1344-008X |
Publisher | : | Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus |
URI | : | http://hdl.handle.net/20.500.12000/16091 |
Citation | : | Ryukyu mathematical journal Vol.12 p.9 -30 |
Appears in Collections | : | Vol.12 (1999)
|
Files in This Item:
File |
Description |
Size | Format |
Vol12p009.pdf | | 6045Kb | Adobe PDF | View/Open |
|
|
|