HOME    About this site    mypage    Japanese    library    university    Feedback

University of the Ryukyus Repository >
Faculty of Science >
Research Report (Faculty of Science) >

 
Title :Kempf複体の超判別式への応用
Title alternative :Am application of Kempf complex to hyper-discriminant
Authors :前田, 高士
志賀, 博雄
Authors alternative :Maeda, Takashi
Shiga, Hiroo
Issue Date :Mar-2004
Abstract :平成14年度~平成15年度科学研究費補助金(基盤研究(C)(2))研究成果報告書
研究概要(和文):平成14年度:A partial order on the symmetric groups defined by 3-cycles (3-サイクルで定義される対称群の半順序):n次対称群の元は自然な積表示(最短表示)をもつが、交代群に対してこの事実に相当するものがないか、つまり、n次交代群の一般の元の、n-2個の3-サイクル(123),...,(n-2,n-1,n)による自然な積表示は何か。1つの試みとして、対称群の Bruhat orderとは異なる半順序を新たに定義した(これは一般のコクセター群でも同じように定義可能)。交代群の元がこの半順序で、最短表示が可能であるための1つの十分条件を得た。また、最短表示が不可能な元は「殆ど不分解な元」から得られることを示し、8次以下の「殆ど不分解な元」をすべて具体的に構成した。平成15年度:The varieties of subspaces stable under a nilpotent transformation (べき零変換で安定な部分空間のなす多様体):ベクトル空間のべき零変換f : V -> VのJordan標準形のタイプをtype V = aと書く。2つの分割bとcに対して、集合S(a, b, c)={W<V ; f(W)<W, type W=b, typeV/W=c}は、Vの|b|次元部分空間のなすグラスマン多様体G(|b|,V)の中で局所閉集合になる。S(a, b, c)のG(|b|,V)内でのZariski閉包X(a, b, c)の特異点集合について以下の結果を得た。(1)S(a, b, c)は非特異。(2)X(a, b, c)は、分割のある半順序<に関してb'<b, c'<cなるものに関するS(a, b',c')の和集合。(3)generic vectorsを定義した。これによりX(a, b, c)の生成点が具体的に構成できて、bの列の大きさが小さいときはX(a, b, c)の定義方程式が容易に記述できる。(4)余次元2の和る特異点集合の定義方程式を記述した。
概要(英文):[A partila order on the symmetric groups defined by 3-cycles] We define a partial order on the symmetric group S_n of degree n by x【less than or equal】y iff y=a_1【triple bond】a_kx with i(y)=i(x)+2k where a_1,【triple bond】, a_k are 3-cycles of increasing or decreasing consecutive three letters and i(*) is the nmber of inversions of the element * of S_n, on the analogy of the weak Bruhat Order. Whether an even parmutaion is comparable to the identity or not in this ordering is considered. It is shown that all of the even permutations of degree n which map 1 to n or n-1 are comparable to the identity. [The varieties of subspaces stable under a nilpotent transformation] Let f : V → V be a nilpotent linear transformation of a vector space V of type V=λ,i.e. the size of Jordan blocks λ_1【greater than or equal】λ_2【greater than or equal】【triple bond】【greater than or equal】λ_ι. For an f-stable subspace W of V,i.e. f(W) ⊂ W, the types of W and V/W are those of the maps f|w : W → W and fv/w : V/W → V/W induced by f, respectively. For partitions ν and μ we investigate the set S(λ,ν,μ)={W ⊂ V;f(W) ⊂ W,type W=ν,type V/W=μ} and the singular locus of the Zariski closure X(λ,ν,μ) of S(λ,ν,μ) in the grassmaniann of subspaces of V of dimension |ν|. We show that S(λ,ν,μ) is nonsingular and its connected components are rational varieties ; generic vectors are introduced, which define the generic points of the irreducible components of X(λ,ν,μ) whose Plucker coordinates are fairly simple to express their defining equations. We describe explicitly the coordinate ring of an affine openset of X(λ,(d),μ) with the singular locus of codimension two.
未公開:P.5以降(別刷論文のため)
Type Local :研究報告書
Publisher :前田高士
URI :http://hdl.handle.net/20.500.12000/18187
Appears in Collections:Research Report (Faculty of Science)

Files in This Item:

File Description SizeFormat
14540035.pdf2023KbAdobe PDFView/Open