HOME    About this site    mypage    Japanese    library    university    Feedback

University of the Ryukyus Repository >
Faculty of Agriculture >
Bulletin >
The Science Bulletin of the Faculty of Agriculture. University of the Ryukyus >
No.25 (1978/12) >

 
Title :海岸保全的見地からの沖縄の飛塩に関する研究(林学科)
Title alternative :Studies on flying salt in Okinawa from the viewpoint of seashore conservation (Department of Forestry)
Authors :幸喜, 善福
Authors alternative :Koki, Zenfuku
Issue Date :1-Dec-1978
Abstract :本論文は, 塩害の原因となる飛塩が, 地表物体にいかに付着し, 供給されているのかその実態と, これをどのように制御しうるかについて, 主として沖縄における測定値によってとりまとめ, 防潮林造成上に必要な基礎的諸問題の解明をはかったものである。1)モールの銀滴定法と比電導度法の関係は次式によって示される。Y=0.0269x+ 0.2625 (r=0.999) y=0.0527x+0.6002 (r=0.998)式中Y : 100ccの蒸留水中に溶出した塩素量(mg), y : 同塩分量(mg), x : 同比電導度の値(μ℧/cm)である。2)ガーゼヘの付着塩分は, ガーゼの重ね枚数は少ないほうが多量の塩分が付着する。また, 野外および室内実験によってガーゼの露出時間は2時間が最適であるが, 4時間まで露出してもたいした問題にはならない。3)なお, ガーゼヘの付着塩分量とブラシへの付着塩分量の間には良好な相関関係があり, ブラシはガーゼの約4.5%の付着塩分量である。4)ガーゼに付着する塩分量が, 海岸から500mまでの範囲でどのように分布しているか沖縄島の本部町備瀬崎, 宜野湾市大謝名, 沖縄市泡瀬の各地で実測し, 国内各地での測定結果と比較すれば, 海岸線近くでは備瀬崎だけが2g/m^2/hr程度で, 国内各地の砂浜での値と似たオーダーであるが, 大謝名, 泡瀬では完全に1桁小さい。しかし, 180∿200m以上内陸に入れば0.1g/m^2/hrのオーダーになって, 国内各地より1桁ないし2桁も大きくなる。沖縄ではエーロゾル状態の飛塩が多く, 砕波による大粒の湿った飛塩は, 沖のサンゴ礁で発生するのが多いため, 海岸に到達する部分が少ないことによるものと考えられる。5)植物体に付着する塩分量においては, 単位葉面積当り付着塩分量の平均的な値は, 針葉のものではモクマオウで5.92×10^-2mg/cm^2,リュウキュウマツで4.75×10^-2mg/cm^2,広葉のものではモンパノキが 3.12×10^-2mg/cm^2,オオハマボウが3.17×10^-3mg/cm^2,タイワンウオクサギ, サトウキビ, アダン, テリハクサトベラ, フクギ, アオガンピの順に1.70×10^-3mg/cm^2から1.13×10^-3mg/cmに少なくなる。針葉のものは広葉に比較して5∿ 50倍も多く付着するが, 広葉のものでは葉の表面に短柔毛があり, しかも葉脈による凹凸の多いモンパノキとオオハマボウが顕著に多くなっている。当然のことながら海岸線から内陸に入るにつれて付着塩分量は減少し, 防潮林の風上林縁と風下林縁では前者に多い。各樹木については高いところほど付着塩分量が多くなるが, 吹きぬけのある場合は地面近くにも多くなる部分ができる。要するに風が強く(多く)吹きつける部分に付着塩分量が多くなっている傾向がある。
6)降雨水に含まれる塩分については, 月平均では9月が最高で3.7×10^2μ℧/cmに達するが, 11月から2月までは2.6×10^2μ℧/cmの状態が続く。最低は6月で4.4×10μ℧/cm位と1桁近く低下し, 7月, 10月は7∿8×10μ℧/cm位, 年平均は約1.8×10μ℧/cmとなる。沖縄本島を横断しての分布は西海岸で3.0×10^2μ℧/cm, 東海岸でその2/3,内陸部では1/2から1/3位の平均値になる。東海岸では夏季に, 西海岸では冬季に多くなる傾向がある。台風と北西季節風に大きく支配されている。連続降雨については, 測定回数目盛の対数と含塩量の対数が逆比例し, 最初の含塩量の多少にかかわらずほぼ一定に減少し, 3∿4回目に半減し, 7∿9回目で約1/10になる。したがって降雨量が少ないほど含塩量は大となる。これに対し台風時の降雨では, 一般に台風が接近するほど含塩量が急増し, 最初の2∿17倍にも達し, その後漸減する。また, 樹幹流下水および樹冠滴下水中の塩分量の月別変化も, 降雨の場合と相似であり, その平均値は前者で降雨の9倍, 後者で5.7倍になる。海岸線近くでは内陸の約3倍になる。連続降雨では3回目で1/2ないし1/3になる。7)ガーゼおよびブラシヘの付着塩分量には数日ないし十数日周期の変動があるので, 観測結果は観測時刻ごとに毎月の平均値もしくは合計値で示した。全体の平均では13時の観測値は9時の値に対して, ガーゼ付着塩分量で50%, ブラシ付着塩分量では100%の増になる。風速は24%, 気温は8%の増となるが湿度は15%の減少となった。17時の観測値も大同小異であった。付着塩分量と平均風速との関係を任意に選んだ11ケ月の毎日のテーターを用いて直線・対数・指数の3つの相関係数を求めた結果, 対数回帰の相関が最もよく, ガーゼヘの付着塩分のほうがブラシヘのものよりすぐれ, 9時の観測値が13時, 17時のものより相関のよいことが示された。そこで9時の全観測値について回帰係数ならびに相関係数を求めたが, 3ケ月の特例以外は相関係数は高度に有意であったが, その法則性は明らかでなかったので, 毎日のテーターを予測に用いることは妥当でないことがわかった。
The present paper is concerned with how flying salt causing salty damage attaches to the objects on the surface of land, how it is carried and how it can be controlled. This study has been worked out through the measurements taken at Okinawa in the hope that basic, essential problems might be solved for the purpose of planting salty wind protection forests. 1) The relationship between the Mohor method and the Electric Resistance method is shown by the formulas below : Y=0.0269x+0.2625 (r=0.999) y=0.0527x+0.6002 (r=0.998) Where Y is the amount of chlorine dissolved in 100cc distilled water (mg), y is its salinity content (mg), and x is the value of its electric resistance method (μ℧/cm). 2) As to the attached salt to gauzes, the fewer the layers, the more salt attaches. The best exposure time of gauzes used for the experiment outside and indoors was two hours, however, we found it makes no difference, even if gauzes were exposed more than four hours. 3) There is a close correlation between the salinity amount attached to gauzes and that attached to the brushes used for cleaning bottles. The salinity amount on the brushes is about 4.5% of that to the gauzes. 4) A testing was done so that we might grasp how the salt attached to gauzes was distributed within the limits of 500 meters from the seashore such as, at Bisezaki, Motobucho of Okinawa Mainland, Ojana of Ginowan city and Awase of Okinawa city. The testing results were compared with those measured figures on the Japan Mainland. So long as the place near the coastline, only the result at Bisezaki was at a level of 2g/m^2/hr, which was almost the same as those of other prefectures. However, the figures at Ojana and Awase were completely one place down. When we entered as far as 180 to 200 meters inside the land, the fogure became 0.1g/m^2/hr and the figure got one or two places higher.
Most flying salt is in the state of aerosols in Okinawa and great round drops of flying salt wet with broken waves are produced at coral reefs off the shore. Therefore, less salt is considered to reach the coast. 5) The salinity amount attached to plants is found in average values per the unit of area of leaves. As to needleleaved trees, Casuarina equisetifolia J. et G. Forst is 5.92×(10)^<-2>mg/(cm)^2,Pinus luchuensis Mayr 4.75×(10)^<-2>mg/(cm)^2. In the case of broad leaved trees, Messerschmidia argentea Johnst, shows 3.12×(10)^<-2>mg/(cm)^2. Hibiscus tiliaceus L., 3.17×(10)^<-3>mg/(cm)^2. From the order of Premna corymbosa var. Obtusifoila Flecher, Saccharum officinarum L., Pandanus tectorius var. liukiuensis Warb., Scaevola frutescens Krause, Garcinia spicata Hook. f. to wikstroemia retusa A. Gray, the figures get smaller from 1.70×(10)^<-3>mg/(cm)^2 to 1.13×(10)^<-3>mg/(cm)^2. Needle leaf trees absorb about two to fifty times as much salt as broad leaf trees, while broad leaves have short, soft wood fiber on the surface of leaves. Such trees as Messerschmidia argentea Johnst. and Hibiscus tiliaceus L. having many ridges gather more salt conspicuosly. Obviously the salinity amount attached to objects decreases as one enters from the seaside to the inner land. The windward forest edges of salty wind protection forests gather much salt in comparison with leeward forest edges. Generally speaking, the higher part of trees gathers more salinity, however, more salt is found even near the surface of the earth open to all winds. In short, there is a tendency that the stronger and the larger the wind is, the greater the salinity to the part where the wind blows. 6) The salinity amount contained in the rainfall reaches the maximum in September at a level of 3.7×(10)^2μ&mho;/cm and 2.6×(10)^2μ&mho;/cm from November to February. The lowest amount is 4.4×10μ&mho;/cm in June, which is one place down. July and October gather 7 to 8×10μ&mho;/cm. The annual average figure is about 1.8×(10)^2μ&mho;/cm. The distribution of salinity crossing over southern
Type Local :紀要論文
ISSN :0370-4246
Publisher :琉球大学農学部
URI :http://hdl.handle.net/20.500.12000/4217
Citation :琉球大学農学部学術報告 = The Science Bulletin of the Faculty of Agriculture. University of the Ryukyus no.25 p.429 -554
Appears in Collections:No.25 (1978/12)

Files in This Item:

File Description SizeFormat
KJ00000161971.pdf9195KbAdobe PDFView/Open