HOME    About this site    mypage    Japanese    library    university    Feedback

University of the Ryukyus Repository >
Faculty of Engineering >
Peer-reviewed Journal Articles (Faculty of Engineering) >

 
Title :量的不均衡データに対する学習精度改善のための文書かさ増し手法
Authors :澤崎, 夏希
遠藤, 聡志
當間, 愛晃
山田, 孝治
赤嶺, 有平
Issue Date :15-Dec-2017
Abstract :機械学習アルゴリズムが特徴量そのものを学習することで様々な領域での問題解決にブレークスルーが起 こっている.テキスト分類の問題領域でも,多くの場合.高い分類精度を達成している.しかし成功例の多くは 各正解ラベルのデータ量が均一あるいはそれに近い状態であることが多い.このため.すべての正解ラベルデー タを十分量用意するためのコストが機械学習アプローチのボトルネックとなっている.また.ラベル毎のデータ 量が不揃いな場合は不均衡データと呼ばれうまく分類できないことが知られている.本研究では,自然言語の不 均衡データに対するかさ増し手法を提案する.提案手法を用いた,不均衡データ分類問題の計算実験を行い.分 類精度の検証によってその有用性を評価する.
Type Local :会議発表論文
Publisher :Webインテリジェンスとインタラクション研究会
URI :http://hdl.handle.net/20.500.12000/46167
Citation :第11回研究会オンライン・プロシーディングス p.41 -46
Appears in Collections:Peer-reviewed Journal Articles (Faculty of Engineering)

Files in This Item:

File Description SizeFormat
WI2_2017_24.pdf597KbAdobe PDFView/Open